YOLOv7-Openvino和ONNXRuntime推理【CPU】

news2025/1/11 12:58:19

纯检测系列
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv7-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】
跟踪系列
YOLOv5/6/7-Openvino-ByteTrack【CPU】
YOLOv8/9-Openvino-ByteTrack【CPU】
分割系列
YOLOv5_seg-Openvino和ONNXRuntime推理【CPU】
YOLOv8_seg-Openvino和ONNXRuntime推理【CPU】
关键点系列
YOLOv7_pose-Openvino和ONNXRuntime推理【CPU】
YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5、YOLOv6和YOLOv7代码内容基本一致!YOLOv8和YOLOv9代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv7介绍

YOLOv7详解-可爱版
YOLOv7官网

# pt2onnx,加grid是将三个头整合一起,不加则推理输出是各个头部输出,需要自己再写处理;end2end加了是包含nms,这里不加!
python export.py --weights yolov7.pt --grid  

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400×3, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400×3表示(80×80+40×40+20×20)×3,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls)。
注:与YOLOv5/v6后处理逻辑一致,可通用!!!

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU


# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
              'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                  'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                      'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                        'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']


class OpenvinoInference(object):
    def __init__(self, onnx_path):
        self.onnx_path = onnx_path
        ie = Core()
        self.model_onnx = ie.read_model(model=self.onnx_path)
        self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
        self.output_layer_onnx = self.compiled_model_onnx.output(0)

    def predict(self, datas):
        predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]
        return predict_data
    

class YOLOv7:
    """YOLOv7 object detection model class for handling inference and visualization."""

    def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """
        self.infer_tool = infer_tool
        if self.infer_tool == 'openvino':
            # 构建openvino推理引擎
            self.openvino = OpenvinoInference(onnx_model)
            self.ndtype = np.single
        else:
            # 构建onnxruntime推理引擎
            self.ort_session = ort.InferenceSession(onnx_model,
                                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

            # Numpy dtype: support both FP32 and FP16 onnx model
            self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
       
        self.classes = CLASSES  # 加载模型类别
        self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):
        """
        The whole pipeline: pre-process -> inference -> post-process.

        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # 前处理Pre-process
        t1 = time.time()
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print('预处理时间:{:.3f}s'.format(time.time() - t1))
        
        # 推理 inference
        t2 = time.time()
        if self.infer_tool == 'openvino':
            preds = self.openvino.predict(im)
        else:
            preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]
        print('推理时间:{:.2f}s'.format(time.time() - t2))
        
        # 后处理Post-process
        t3 = time.time()
        boxes = self.postprocess(preds,
                                im0=im0,
                                ratio=ratio,
                                pad_w=pad_w,
                                pad_h=pad_h,
                                conf_threshold=conf_threshold,
                                iou_threshold=iou_threshold,
                                )
        print('后处理时间:{:.3f}s'.format(time.time() - t3))

        return boxes
        
    # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """
        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充
        
        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)
    
    # 后处理,包括:阈值过滤与NMS
    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
        x = preds  # outputs: predictions (1, 8400*3, 85)
    
        # Predictions filtering by conf-threshold
        x = x[x[..., 4] > conf_threshold]
       
        # Create a new matrix which merge these(box, score, cls) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]

        # NMS filtering
        # 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
    
        # 重新缩放边界框,为画图做准备
        if len(x) > 0:
            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            return x[..., :6]  # boxes
        else:
            return []

    # 绘框
    def draw_and_visualize(self, im, bboxes, vis=False, save=True):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """
        # Draw rectangles 
        for (*box, conf, cls_) in bboxes:
            # draw bbox rectangle
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                          self.color_palette[int(cls_)], 1, cv2.LINE_AA)
            cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)
    
        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # Save image
        if save:
            cv2.imwrite('demo.jpg', im)


if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='weights/yolov7.onnx', help='Path to ONNX model')
    parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')
    parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
    parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
    parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--infer_tool', type=str, default='openvinos', choices=("openvino", "onnxruntime"), help='选择推理引擎')
    args = parser.parse_args()

    # Build model
    model = YOLOv7(args.model, args.imgsz, args.infer_tool)

    # Read image by OpenCV
    img = cv2.imread(args.source)
   
    # Inference
    boxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)

    # Visualize
    if len(boxes) > 0:
        model.draw_and_visualize(img, boxes, vis=False, save=True)
    

4.2 结果

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.25s(Openvino)
推理时间:0.40s(ONNXRuntime)
后处理时间:0.001s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1521368.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vscode 生成树状图工具:project-tree

按下快捷键“CtrlShiftP”, 在弹框中输入 Project Tree,然后敲回车即会在根目录自动生成README.md(如果之前没有的话)。

[题解]无厘头题目——无聊的军官

这道题非常无厘头! 题目描述: 每个学年的开始,高一新生们都要进行传统的军训。今年有一个军训教官十分奇怪,他为了测试学员们的反应能力,每次吹哨后学员们都会变换位置。每次左数第I位学员都会站到第ai个位置&#x…

谷歌的后量子密码学威胁模型

1. 引言 若现在不使用量子安全算法来加密数据,能够存储当前通信的攻击者最快十年内就能对其解密。这种先存储后解密的攻击是当前采用后量子密码学 (post-quantum cryptography,PQC) 背后的主要动机,但其他未来的量子计算威胁也需要一个深思熟…

Linux下Arthas(阿尔萨斯)的简单使用-接口调用慢排查

使用环境 k8s容器内运行了一个springboot服务,服务的启动方法是main()方法 下载并启动 arthas curl -O https://arthas.aliyun.com/arthas-boot.jar java -jar arthas-boot.jar选择应用 java 进程 就一个进程org.apache.catalina.startup.Bootstrap,输…

Unity PS5开发 天坑篇 之 申请开发者与硬件部署01

腾了好几天终于把PS5开发机调试部署成功, 希望能帮到国内的开发者, 主机游戏PlayStation/Nintendo Switch都是比较闭塞的,开发者账号是必须的。 开发环境有两个部分,一是DEV Kit 开发机, TEST Kit测试机两部分组成,二是Unity的支持库(安装后…

Android的三种动画详解(帧动画,View动画,属性动画)

Android的三种动画详解(帧动画、View动画、属性动画)_android动画效果大全-CSDN博客 1、帧动画 缺点是:占用内存较高,播放的是一帧一帧的图片,很少使用。 顺序播放预先定义的图片,类似于播放视频。 步骤…

数据结构 第3章:栈与队列

文章目录 1. 栈1.1 栈的基本概念1.2 栈的基本操作1.3 栈的顺序存储实现1.4 栈的链式存储实现 2. 队列2.1 队列的基本概念2.2 队列的基本操作2.3. 队列的顺序存储实现2.4 队列的链式存储实现2.5 双端队列 3. 栈与队列的应用3.1 栈在括号匹配中的应用3.2 栈在表达式求值中的应用3…

k8s的pod和svc相互访问时网络链路解析

k8s的pod和svc相互访问时网络链路解析 1. k8s环境中pod相互访问1.1. k8s中pod相互访问的整体流程1.2. k8s的相同机器的不同pod相互访问1.3. k8s的不同机器的不同pod相互访问 2. k8s访问svc2.1 nat操作2.2 流量进入到后端pod 3. 疑问和思考3.1 访问pod相互访问为什么不用做nat?…

【Linux】从零开始认识进程 — 前篇

我从来不相信什么懒洋洋的自由。我向往的自由是通过勤奋和努力实现的更广阔的人生。。——山本耀司 从零开始认识进程 1 认识冯诺依曼体系2 操作系统3 进程3.1 什么是进程???3.2 进程管理PCB 3.3 Linux中的进程深入理解 3.4 进程创建总结 送给…

【vue baidu-map】实现百度地图展示基地,鼠标悬浮标注点展示详细信息

实现效果如下&#xff1a; 自用代码记录 <template><div class"map" style"position: relative;"><baidu-mapid"bjmap":scroll-wheel-zoom"true":auto-resize"true"ready"handler"><bm-mar…

JVMJava虚拟机

JVM的内存区域 程序计数器&#xff1a; 字节码解释器通过改变程序计数器来依次读取指令&#xff0c;从而实现代码的流程控制&#xff0c;如&#xff1a;顺序执行、选择、循环、异常处理。 在多线程的情况下&#xff0c;程序计数器用于记录当前线程执行的位置&#xff0c;从而当…

python—gui-计算图像像素两点间距离

代码&#xff1a; import tkinter as tk from tkinter import ttkdef create_gui():# 创建Tkinter窗口root tk.Tk()# 设置窗口标题root.title("显示图片")# 图片文件路径image_path path_to_your_image.jpg# 加载图片img load_image(image_path)# 创建标签&#…

产品推荐 - ALINX XILINX FPGA开发板 Artix-7 XC7A100T-2FGG484I

01开发板介绍 此款开发板采用核心板扩展板的模式&#xff0c;方便用户对核心板的二次开发利用。FPGA使用的是Xilinx公司的ARTIX-7系列的芯片&#xff0c;型号为XC7A100T-2FGG484I。在核心板使用了2片MICRON公司的MT41J256M16HA-125 DDR3芯片&#xff0c;组合成32bit的数据总线…

联想拯救者刃7000K2024游戏电脑主机仅售6999元

这款联想拯救者刀锋7000K 2024游戏电脑主机在京东促销中售价仅为6999元&#xff0c;相比原价7499元有相当大的折扣。 这是一款功能强大的游戏电脑&#xff0c;配备了全新的 15-14400(F) 处理器和 RTX™ 4060 显卡&#xff0c;以及 16GB DDR5 内存和 1TB 固态硬盘。 外观方面&a…

STL_vector简化模拟—详解深层次深拷贝问题

文章目录 迭代器框架和成员变量基础成员函数容量相关的成员函数关于深拷贝中的深拷贝问题operator[ ]重载和内容修改函数类模板内的嵌套类型全部代码 根据原码看出vector的成员并不像string类的一个指针加一个size和一个capacity。 而是三个指针&#xff0c;_start , _finish ,…

IntelliJ IDEA 面试题及答案整理,最新面试题

IntelliJ IDEA中的插件系统如何工作&#xff1f; IntelliJ IDEA的插件系统工作原理如下&#xff1a; 1、插件架构&#xff1a; IntelliJ IDEA通过插件架构扩展其功能&#xff0c;插件可以添加新的功能或修改现有功能。 2、安装和管理&#xff1a; 通过IDEA内置的插件市场下载…

【海贼王的数据航海】排序——直接选择排序|堆排序

目录 1 -> 选择排序 1.1 -> 基本思想 1.2 -> 直接选择排序 1.2.1 -> 代码实现 1.3 -> 堆排序 1.3.1 -> 代码实现 1 -> 选择排序 1.1 -> 基本思想 每一次从待排序的数据元素中选出最小(或最大)的一个元素&#xff0c;存放在序列的起始位置&…

springCloudeAlibaba的使用

父pom文件&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.o…

【Docker篇】数据卷相关操作

文章目录 &#x1f388;前言&#x1f354;数据卷&#x1f6f8;操作命令⭐创建一个数据卷&#xff0c;并查看数据卷在宿主机的目录位置 &#x1f339;挂载数据卷 &#x1f388;前言 在前面文章的nginx案例中&#xff0c;修改nginx的html页面时&#xff0c;需要进入nginx内部。并…

k8s-高可用etcd集群 26

reset掉k8s2&#xff0c;k8s3&#xff0c;k8s4节点 清理完网络插件后重启 快速创建一个k8s集群 修改初始化文件 添加master节点 备份 查看etcd配置 启动docker 将etcd二进制命令从容器拷贝到本机 备份 查看快照状态 删除集群资源 恢复 停掉所有的核心组件 从快照恢复 重启所有…