leetcode-打家劫舍专题系列(动态规划)

news2025/1/11 2:52:09

198.打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:
输入:[2,7,9,3,1]
输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:

0 <= nums.length <= 100
0 <= nums[i] <= 400

思路
大家如果刚接触这样的题目,会有点困惑,当前的状态我是偷还是不偷呢?

仔细一想,当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。

所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。

确定递推公式
决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

dp数组如何初始化
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

代码如下:

vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);

确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

代码如下:

for (int i = 2; i < nums.size(); i++) {
    dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。
在这里插入图片描述
红框dp[nums.size() - 1]为结果。

class Solution:
    def rob(self, nums: List[int]) -> int:
        if len(nums) == 0:  # 如果没有房屋,返回0
            return 0
        if len(nums) == 1:  # 如果只有一个房屋,返回其金额
            return nums[0]

        # 创建一个动态规划数组,用于存储最大金额
        dp = [0] * len(nums)
        dp[0] = nums[0]  # 将dp的第一个元素设置为第一个房屋的金额
        dp[1] = max(nums[0], nums[1])  # 将dp的第二个元素设置为第一二个房屋中的金额较大者

        # 遍历剩余的房屋
        for i in range(2, len(nums)):
            # 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])

        return dp[-1]  # 返回最后一个房屋中可抢劫的最大金额

213.打家劫舍II

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]

输出:3

解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]

输出:4

解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [0]

输出:0

提示:

1 <= nums.length <= 100
0 <= nums[i] <= 1000

思路

这道题目和198.打家劫舍 是差不多的,唯一区别就是成环了。

对于一个数组,成环的话主要有如下三种情况:

情况一:考虑不包含首尾元素
在这里插入图片描述

情况二:考虑包含首元素,不包含尾元素请添加图片描述
在这里插入图片描述
在这里插入图片描述

情况三:考虑包含尾元素,不包含首元素
在这里插入图片描述

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。

分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍 (opens new window)就是一样的了。

总结

成环之后还是难了一些的, 不少题解没有把“考虑房间”和“偷房间”说清楚。

这就导致大家会有这样的困惑:情况三怎么就包含了情况一了呢? 本文图中最后一间房不能偷啊,偷了一定不是最优结果。

所以我在本文重点强调了情况一二三是“考虑”的范围,而具体房间偷与不偷交给递推公式去抉择。

这样大家就不难理解情况二和情况三包含了情况一了。

class Solution:
    def robrange(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0

        if len(nums) == 1:
            return nums[0]

        dp = [0] * len(nums)
        dp[0] = nums[0]
        dp[1] = max(nums[0], nums[1])
        for i in range(2, len(nums)):
            dp[i] = max(dp[i-2] + nums[i], dp[i-1])

        return dp[-1]



    def rob(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0

        if len(nums) == 1:
            return nums[0]

        dp1 = self.robrange(nums[1:])
        dp2 = self.robrange(nums[:len(nums)-1])
        return max(dp1, dp2)

337.打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

在这里插入图片描述

思路

这道题目和 198.打家劫舍 ,213.打家劫舍II 也是如出一辙,只不过这个换成了树。

如果对树的遍历不够熟悉的话,那本题就有难度了。

对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。

与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)

暴力递归

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rob(self, root: TreeNode) -> int:
        if root is None:
            return 0
        if root.left is None and root.right  is None:
            return root.val
        # 偷父节点
        val1 = root.val
        if root.left:
            val1 += self.rob(root.left.left) + self.rob(root.left.right)
        if root.right:
            val1 += self.rob(root.right.left) + self.rob(root.right.right)
        # 不偷父节点
        val2 = self.rob(root.left) + self.rob(root.right)
        return max(val1, val2)

动态规划


# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rob(self, root: Optional[TreeNode]) -> int:
        # dp数组(dp table)以及下标的含义:
        # 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
        # 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
        dp = self.traversal(root)
        return max(dp)

    # 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
    def traversal(self, node):
        
        # 递归终止条件,就是遇到了空节点,那肯定是不偷的
        if not node:
            return (0, 0)

        left = self.traversal(node.left)
        right = self.traversal(node.right)

        # 不偷当前节点, 偷子节点
        val_0 = max(left[0], left[1]) + max(right[0], right[1])

        # 偷当前节点, 不偷子节点
        val_1 = node.val + left[0] + right[0]

        return (val_0, val_1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1520283.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# WPF中设置图标时出现TypeConverterMarkupExtension异常

异常内容为&#xff1a;System.Windows.Baml2006.TypeConverterMarkupExtension 是因为有些地方比如菜单和左上角默认的图标等&#xff0c;只能使用ico格式的文件&#xff0c;如果设置的是png格式的文件&#xff0c;就会出现此错误&#xff01;通过在线转ico的方式把png转换一…

【Maven学习笔记】Maven入门教程(适合新手反复观看学习)

Maven学习笔记 Maven的简要介绍Maven的安装和配置Maven的安装Maven安装的常用配置 Maven的使用入门编写pom编写主代码编写测试代码打包和运行使用Archetype生成项目骨架 Maven核心概念的阐述坐标案例分析依赖依赖的范围传递性依赖依赖范围依赖调节可选依赖Maven依赖常用的技巧 …

《ARM汇编与逆向工程》读书心得与实战体验

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 &#x1f4d8; 一、引言 &#x1f4dd; 二、…

vite打包流程和原理

文章目录 打包原理Vite比Webpack快&#xff1f;在生产环境下的表现启动项目后&#xff0c;完成加载比较慢&#xff1f;Esbuild & Rollup热更新 打包原理 vite利用了ES module这个特性&#xff0c;使用vite运行项目时&#xff0c;首先会用esbuild进行预构建&#xff0c;将所…

音视频如何快速转二维码?在线生成音视频活码的教程

音频文件的二维码制作步骤是什么样的呢&#xff1f;扫描二维码来展现内容是很流行的一种方式&#xff0c;基本上日常生活中经常会用的图片、音频、视频等都可以使用生成二维码的方式。现在很多的幼儿园或者学校会录制孩子的音频或者视频内容用来展示&#xff0c;那么二维码制作…

Kafka配置SASL_PLAINTEXT权限。常用操作命令,创建用户,topic授权

查看已经创建的topic ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --list 创建topic 创建分区和副本数为1的topic ./bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --topic acltest --partitions 1 --replication-factor 1 创建kafka用户 …

酷轻松气囊按摩护膝全新上线,科技呵护膝部健康

在快节奏的现代生活中&#xff0c;膝部健康问题逐渐引起人们的重视。长时间的站立、行走或运动&#xff0c;都可能对膝部造成不同程度的压力和损伤。 特别是家里有老人一直被老寒腿、关节发凉疼痛困扰的&#xff0c;经常一遇到下雨天&#xff0c;膝盖就不舒服&#xff1b;尤其到…

2 .Gen<I>Cam模块介绍

模块组成&#xff1a;GenApi&#xff0c;SFNC&#xff0c;GenTL&#xff0c;GenDC&#xff0c;GenCP。 首先让我来看下 GenTL (Transport Layer) GenApi( sometimes simply called the GenICam Standard) 传统相机应用程序二次开发&#xff0c;是基于相机厂家提供的sdk。使用…

python:消息推送 - 飞书机器人推送 - 富文本格式

简介&#xff1a;机器人 ( bot ) 是一种自动化的程序&#xff0c;可以用拟人化的身份自动推送消息&#xff0c;或在聊天里与你进行简单的交互。在自动化完成测试任务后&#xff0c;推送测试报告等是一种很常用的收尾工具。 历史攻略&#xff1a; python&#xff1a;消息推送 …

Python爬虫 Day1

要注意看网页的请求方式是request还是get 一、小型爬虫 &#xff08;爬百度首页&#xff09; from urllib.request import urlopen url "https://www.baidu.com" resp urlopen(url) print(resp.read().decode(utf-8)) print("over!") //&#xff01;&am…

DHCP在企业网的部署及安全防范

学习目标&#xff1a; 1. DHCP能够解决什么问题&#xff1f; 2. DHCP服务器如何部署&#xff1f; 3. 私接设备会带来什么问题以及如何防范&#xff1f; 给DHCP服务器配置地址&#xff1a; 地址池&#xff1a; DHCP有2种分配模式&#xff1a;全局分配和接口分配 DHCP enable

【矩阵】48. 旋转图像【中等】

旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,…

供电系统分类详解

一、供电系统分类 电力供电系统一般有5种供电模式&#xff0c;常用的有&#xff1a;IT系统&#xff0c;TT系统&#xff0c;TN系统&#xff0c;其中TN系统又可以分为TN-C&#xff0c;TN-S&#xff0c;TN-C-S。 1、TN-C系统&#xff08;三相四线制&#xff09; 优点: 该系统中…

ASP.NET-Server.UrlEncode

目录 背景: Server.UrlEncode作用: 1.URL 编码&#xff1a; 2.避免冲突&#xff1a; 3.安全性&#xff1a; 4.规范化&#xff1a; 实例说明: 不使用Server.UrlEncode 使用Server.UrlEncode 总结: 背景: Server.UrlEncode方法在ASP.NET中主要功能是对URL中的参数进行编…

MySQL-HMA 高可用故障切换

本章内容&#xff1a; 了解MySQL MHA搭建MySQL MHAMySQL MHA故障切换 1.案例分析 1.1.1案例概述 目前 MySQL 已经成为市场上主流数据库之一&#xff0c;考虑到业务的重要性&#xff0c;MySQL 数据库 单点问题已成为企业网站架构中最大的隐患。随着技术的发展&#xff0c;MHA…

dockers拉取MySQL及Redis并挂载文件

目录 一 . MySQL拉取 1、进入 MySQL 容器内部。 2、登录 MySQL。 3、修改远程连接 4、刷新 二 . Redis拉取 1 . redis/conf中新建文件redis.conf&#xff0c;内容如下&#xff1a; 2 . 容器运行 一 . MySQL拉取 docker run -d --restartalways --name mysql \ -v /…

【贪心算法】Leetcode 55. 跳跃游戏

【贪心算法】Leetcode 55. 跳跃游戏 解法1解法2 ---------------&#x1f388;&#x1f388;55. 跳跃游戏 题目链接&#x1f388;&#x1f388;------------------- 解法1 关键点在于&#xff1a;不用拘泥于每次究竟跳几步&#xff0c;而是看覆盖范围&#xff0c;覆盖范围内…

Unity开发一个FPS游戏之二

在之前的文章中,我介绍了如何开发一个FPS游戏,添加一个第一人称的主角,并设置武器。现在我将继续完善这个游戏,打算添加敌人,实现其智能寻找玩家并进行对抗。完成的效果如下: fps_enemy_demo 下载资源 首先是设计敌人,我们可以在网上找到一些好的免费素材,例如在Unity…

HTML + CSS 高频考点之 - 定位

简述&#xff1a; 补充固定定位也会脱离文档流、不会占据原先位置 1、什么是文档流 文档流是指HTML文档中元素排列的规律和顺序。在网页中&#xff0c;元素按照其在HTML文档中出现的顺序依次排列&#xff0c;这种排列方式被称为文档流。文档流决定了元素在页面上的位置和互相之…