【Linux】进程信号万字详解(上)

news2025/1/21 4:56:12

🎇Linux:


  • 博客主页:一起去看日落吗
  • 分享博主的在Linux中学习到的知识和遇到的问题
  • 博主的能力有限,出现错误希望大家不吝赐教
  • 分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持的意义,祝我们都能在鸡零狗碎里找到闪闪的快乐🌿🌞🐾。

在这里插入图片描述

✨ ⭐️ 🌟 💫


目录

  • ✨ 1. 信号入门
    • 🌟 1.1 生活角度的信号
    • 🌟 1.2 技术应用角度的信号
    • 🌟 1.3 信号的发送与记录
    • 🌟 1.4 信号处理常见方式概述
  • ✨ 2. 产生信号
    • 🌟 2.1 通过终端按键产生信号
    • 🌟 2.2 通过系统函数向进程发信号
    • 🌟 2.3 由软件条件产生信号
    • 🌟 2.4 由硬件异常产生信号

✨ 1. 信号入门

🌟 1.1 生活角度的信号

  • 你在网上买了很多件商品,在等待不同商品快递的到来。但即便快递还没有到来,你也知道快递到了的时候应该怎么处理快递,也就是你能“识别快递”。
  • 当快递到达目的地了,你收到了快递到来的通知,但是你不一定要马上下楼取快递,也就是说取快递的行为并不是一定要立即执行,可以理解成在“在合适的时候去取”。
  • 在你收到快递到达的通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间内你并没有拿到快递,但是你知道快递已经到了,本质上是你“记住了有一个快递要去取”。
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了,而处理快递的方式有三种:1、执行默认动作(打开快递,使用商品)2、执行自定义动作(快递是帮别人买的,你要将快递交给他)3、忽略(拿到快递后,放在一边继续做自己的事)。
  • 快递到来的整个过程,对你来讲是异步的,你不能确定你的快递什么时候到。

🌟 1.2 技术应用角度的信号

#include <stdio.h>
#include <unistd.h>

int main()
{
	while (1){
		printf("hello signal!\n");
		sleep(1);
	}
	return 0;
}

我们知道该程序的运行结果就是死循环地进行打印,而对于死循环来说,最好的方式就是使用^C终止进程

在这里插入图片描述
实际上当用户按 ^ C时,这个键盘输入会产生一个硬中断,被操作系统获取并解释成信号( ^ C被解释成2号信号),然后操作系统将2号信号发送给目标前台进程,当前台进程收到2号信号后就会退出。

我们可以使用signal函数对2号信号进行捕捉,证明当我们按Ctrl+C时进程确实是收到了2号信号。使用signal函数时,我们需要传入两个参数,第一个是需要捕捉的信号编号,第二个是对捕捉信号的处理方法,该处理方法的参数是int,返回值是void。

例如,下面的代码中将2号信号进行了捕捉,当该进程运行起来后,若该进程收到了2号信号就会打印出收到信号的信号编号。

#include <stdio.h>
#include <signal.h>
#include <unistd.h>

void handler(int sig)
{
	printf("get a signal:%d\n", sig);
}

int main()
{
	signal(2, handler); //注册2号信号
	while (1){
		printf("hello signal!\n");
		sleep(1);
	}
	return 0;
}

此时当该进程收到2号信号后,就会执行我们给出的handler方法,而不会像之前一样直接退出了,因为此时我们已经将2号信号的处理方式由默认改为了自定义了。由此也证明了,当我们按^C时进程确实是收到了2号信号。

在这里插入图片描述

注意:

  • ^C产生的信号只能发送给前台进程。在一个命令后面加个&就可以将其放到后台运行,这样Shell就不必等待进程结束就可以接收新的命令,启动新的进程。
  • Shell可以同时运行一个前台进程和任意多个后台进程,但是只有前台进程才能接到像Ctrl+C这种控制键产生的信号。
  • 前台进程在运行过程中,用户随时可能按下Ctrl+C而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都可能收到SIGINT信号而终止,所以信号相对于进程的控制流程来说是异步的。
  • 信号是进程之间事件异步通知的一种方式,属于软中断。

🌟 1.3 信号的发送与记录

我们使用kill -l命令可以查看Linux当中的信号列表

在这里插入图片描述

其中 1 ~ 31号信号是普通信号,34 ~ 64号信号是实时信号

  • 那信号是如何记录的呢?

实际上,当一个进程接收到某种信号后,该信号是被记录在该进程的进程控制块当中的。我们都知道进程控制块本质上就是一个结构体变量,而对于信号来说我们主要就是记录某种信号是否产生,因此,我们可以用一个32位的位图来记录信号是否产生。

在这里插入图片描述

其中比特位的位置代表信号的编号,而比特位的内容就代表是否收到对应信号,比如第6个比特位是1就表明收到了6号信号。

  • 那信号是如何产生的呢?

一个进程收到信号,本质就是该进程内的信号位图被修改了,也就是该进程的数据被修改了,而只有操作系统才有资格修改进程的数据,因为操作系统是进程的管理者。也就是说,信号的产生本质上就是操作系统直接去修改目标进程的task_struct中的信号位图。

注意:信号只能由操作系统发送,但信号发送的方式有多种。


🌟 1.4 信号处理常见方式概述

  1. 执行该信号的默认处理动作。
  2. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。
  3. 忽略该信号。

在Linux当中,我们可以通过man手册查看各个信号默认的处理动作

man 7 signal

在这里插入图片描述


✨ 2. 产生信号

🌟 2.1 通过终端按键产生信号

当面对下面的死循环程序时,我们都知道可以按^C可以终止该进程

#include <stdio.h>
#include <unistd.h>

int main()
{
	while (1){
		printf("hello signal!\n");
		sleep(1);
	}
	return 0;
}

但实际上除了按^C之外,按 ^\也可以终止该进程。

按^C实际上是向进程发送2号信号SIGINT,而按 ^\实际上是向进程发送3号信号SIGQUIT。查看这两个信号的默认处理动作,可以看到这两个信号的Action是不一样的,2号信号是Term,而3号信号是Core。

在这里插入图片描述
Term和Core都代表着终止进程,但是Core在终止进程的时候会进行一个动作,那就是核心转储

在这里插入图片描述

  • 那什么是核心转储?

在云服务器中,核心转储是默认被关掉的,我们可以通过使用ulimit -a命令查看当前资源限制的设定。

在这里插入图片描述
其中,第一行显示core文件的大小为0,即表示核心转储是被关闭的。

我们可以通过ulimit -c size命令来设置core文件的大小。

![在这里插入图片描述](https://img-blog.csdnimg.cn/90e602e612594f5196b525

ad02c74028.png)

core文件的大小设置完毕后,就相当于将核心转储功能打开了。此时如果我们再使用Ctrl+\对进程进行终止,就会发现终止进程后会显示core dumped。

在这里插入图片描述
并且会在当前路径下生成一个core文件,该文件以一串数字为后缀,而这一串数字实际上就是发生这一次核心转储的进程的PID。

在这里插入图片描述

limit命令改变的是Shell进程的Resource Limit,但myproc进程的PCB是由Shell进程复制而来的,所以也具有和Shell进程相同的Resource Limit值。

  • 核心转储功能有什么用呢?

当我们的代码出错了,我们最关心的是我们的代码是什么原因出错的。如果我们的代码运行结束了,那么我们可以通过退出码来判断代码出错的原因,而如果一个代码是在运行过程中出错的,那么我们也要有办法判断代码是什么原因出错的。

当我们的程序在运行过程中崩溃了,我们一般会通过调试来进行逐步查找程序崩溃的原因。而在某些特殊情况下,我们会用到核心转储,核心转储指的是操作系统在进程收到某些信号而终止运行时,将该进程地址空间的内容以及有关进程状态的其他信息转而存储到一个磁盘文件当中,这个磁盘文件也叫做核心转储文件,一般命名为core.pid。

而核心转储的目的就是为了在调试时,方便问题的定位。

在这里插入图片描述
很明显,该代码当中出现了除0错误,该程序运行会崩溃。

此时我们便可以在当前目录下看到核心转储时生成的core文件。
在这里插入图片描述

使用gdb对当前可执行程序进行调试,然后直接使用core-file core文件命令加载core文件,即可判断出该程序在终止时收到了8号信号,并且定位到了产生该错误的具体代码。

在这里插入图片描述

事后用调试器检查core文件以查清错误原因,这种调试方式叫做事后调试。

  • core dump标志

还记得进程等待函数waitpid函数的第二个参数吗:

pid_t waitpid(pid_t pid, int *status, int options);

waitpid函数的第二个参数status是一个输出型参数,用于获取子进程的退出状态。status是一个整型变量,但status不能简单的当作整型来看待,status的不同比特位所代表的信息不同,具体细节如下(只关注status低16位比特位):

在这里插入图片描述
若进程是正常终止的,那么status的次低8位就表示进程的退出状态,即退出码。若进程是被信号所杀,那么status的低7位表示终止信号,而第8位比特位是core dump标志,即进程终止时是否进行了核心转储。

在这里插入图片描述

打开Linux的核心转储功能,并编写下列代码。代码中父进程使用fork函数创建了一个子进程,子进程所执行的代码当中存在野指针问题,当子进程执行到*p = 100时,必然会被操作系统所终止并在终止时进行核心转储。此时父进程使用waitpid函数便可获取到子进程退出时的状态,根据status的第7个比特位便可得知子进程在被终止时是否进行了核心转储。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

int main()
{
	if (fork() == 0){
		//child
		printf("I am running...\n");
		int *p = NULL;
		*p = 100;
		exit(0);
	}
	//father
	int status = 0;
	waitpid(-1, &status, 0);
	printf("exitCode:%d, coreDump:%d, signal:%d\n",
		(status >> 8) & 0xff, (status >> 7) & 1, status & 0x7f);
	return 0;
}

可以看到,所获取的status的第7个比特位为1,即可说明子进程在被终止时进行了核心转储。

在这里插入图片描述
core dump标志实际上就是用于表示程序崩溃的时候是否进行了核心转储。

注意: 有些信号是不能被捕捉的,比如9号信号。因为如果所有信号都能被捕捉的话,那么进程就可以将所有信号全部进行捕捉并将动作设置为忽略,此时该进程将无法被杀死,即便是操作系统。


🌟 2.2 通过系统函数向进程发信号

当我们要使用kill命令向一个进程发送信号时,我们可以以kill -信号名 进程ID的形式进行发送。也可以以kill -信号编号 进程ID的形式进行发送。

实际上kill命令是通过调用kill函数实现的,kill函数可以给指定的进程发送指定的信号,kill函数的函数原型如下:

int kill(pid_t pid, int sig);

kill函数用于向进程ID为pid的进程发送sig号信号,如果信号发送成功,则返回0,否则返回-1。

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <signal.h>

void Usage(char* proc)
{
	printf("Usage: %s pid signo\n", proc);
}
int main(int argc, char* argv[])
{
	if (argc != 3){
		Usage(argv[0]);
		return 1;
	}
	pid_t pid = atoi(argv[1]);
	int signo = atoi(argv[2]);
	kill(pid, signo);
	return 0;
}

为了让生成的可执行程序在执行时不用带上路径,我们可以将当前路径导入环境变量PATH当中。

在这里插入图片描述

此时我们便模拟实现了一个kill命令,该命令的使用方式为mykill 进程ID 信号编号。

  • raise函数

raise函数可以给当前进程发送指定信号,即自己给自己发送信号,raise函数的函数原型如下:

int raise(int sig);

raise函数用于给当前进程发送sig号信号,如果信号发送成功,则返回0,否则返回一个非零值。

例如,下列代码当中用raise函数每隔一秒向自己发送一个2号信号。

#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void handler(int signo)
{
	printf("get a signal:%d\n", signo);
}
int main()
{
	signal(2, handler);
	while (1){
		sleep(1);
		raise(2);
	}
	return 0;
}

运行结果就是该进程每隔一秒收到一个2号信号。

在这里插入图片描述

  • abort函数

raise函数可以给当前进程发送SIGABRT信号,使得当前进程异常终止,abort函数的函数原型如下:

void abort(void);

abort函数是一个无参数无返回值的函数。

例如,下列代码当中每隔一秒向当前进程发送一个SIGABRT信号。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>

void handler(int signo)
{
	printf("get a signal:%d\n", signo);
}
int main()
{
	signal(6, handler);
	while (1){
		sleep(1);
		abort();
	}
	return 0;
}

与之前不同的是,虽然我们对SIGABRT信号进行了捕捉,并且在收到SIGABRT信号后执行了我们给出的自定义方法,但是当前进程依然是异常终止了。

在这里插入图片描述
** 注意:abort函数的作用是异常终止进程,exit函数的作用是正常终止进程,而abort本质是通过向当前进程发送SIGABRT信号而终止进程的,因此使用exit函数终止进程可能会失败,但使用abort函数终止进程总是成功的。**


🌟 2.3 由软件条件产生信号

  • SIGPIPE信号

SIGPIPE信号实际上就是一种由软件条件产生的信号,当进程在使用管道进行通信时,读端进程将读端关闭,而写端进程还在一直向管道写入数据,那么此时写端进程就会收到SIGPIPE信号进而被操作系统终止。

下面代码当中,创建匿名管道进行父子进程之间的通信,其中父进程是读端进程,子进程是写端进程,但是一开始通信父进程就将读端关闭了,那么此时子进程在向管道写入数据时就会收到SIGPIPE信号,进而被终止。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{
	int fd[2] = { 0 };
	if (pipe(fd) < 0){ //使用pipe创建匿名管道
		perror("pipe");
		return 1;
	}
	pid_t id = fork(); //使用fork创建子进程
	if (id == 0){
		//child
		close(fd[0]); //子进程关闭读端
		//子进程向管道写入数据
		const char* msg = "hello father, I am child...";
		int count = 10;
		while (count--){
			write(fd[1], msg, strlen(msg));
			sleep(1);
		}
		close(fd[1]); //子进程写入完毕,关闭文件
		exit(0);
	}
	//father
	close(fd[1]); //父进程关闭写端
	close(fd[0]); //父进程直接关闭读端(导致子进程被操作系统杀掉)
	int status = 0;
	waitpid(id, &status, 0);
	printf("child get signal:%d\n", status & 0x7F); //打印子进程收到的信号
	return 0;
}

运行代码后,即可发现子进程在退出时收到的是13号信号,即SIGPIPE信号。

在这里插入图片描述

  • alarm函数

调用alarm函数可以设定一个闹钟,也就是告诉操作系统在若干时间后发送SIGALRM信号给当前进程,alarm函数的函数原型如下:

unsigned int alarm(unsigned int seconds);

alarm函数的作用就是,让操作系统在seconds秒之后给当前进程发送SIGALRM信号,SIGALRM信号的默认处理动作是终止进程。

alarm函数的返回值:

  1. 若调用alarm函数前,进程已经设置了闹钟,则返回上一个闹钟时间的剩余时间,并且本次闹钟的设置会覆盖上一次闹钟的设置。
  2. 如果调用alarm函数前,进程没有设置闹钟,则返回值为0。

我们可以用下面的代码,测试自己的云服务器一秒时间内可以将一个变量累加到多大。

#include <stdio.h>
#include <signal.h>
#include <unistd.h>

int main()
{
	int count = 0;
	alarm(1);
	while (1){
		count++;
		printf("count: %d\n", count);
	}
	return 0;
}

在这里插入图片描述
运行代码后,可以发现我当前的云服务器在一秒内可以将一个变量累加到九万左右。

但实际上我当前的云服务器在一秒内可以执行的累加次数远大于九万,那为什么上述代码运行结果比实际结果要小呢?

主要原因有两个,首先,由于我们每进行一次累加就进行了一次打印操作,而与外设之间的IO操作所需的时间要比累加操作的时间更长,其次,由于我当前使用的是云服务器,因此在累加操作后还需要将累加结果通过网络传输将服务器上的数据发送过来,因此最终显示的结果要比实际一秒内可累加的次数小得多。

为了尽可能避免上述问题,我们可以先让count变量一直执行累加操作,直到一秒后进程收到SIGALRM信号后再打印累加后的数据。

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

int count = 0;
void handler(int signo)
{
	printf("get a signal: %d\n", signo);
	printf("count: %d\n", count);
	exit(1);
}
int main()
{
	signal(SIGALRM, handler);
	alarm(1);
	while (1){
		count++;
	}
	return 0;
}

此时可以看到,count变量在一秒内被累加的次数变成了四亿多,由此也证明了,与计算机单纯的计算相比较,计算机与外设进行IO时的速度是非常慢的。

在这里插入图片描述


🌟 2.4 由硬件异常产生信号

  • 为什么C/C++程序会崩溃?

当我们程序当中出现类似于除0、野指针、越界之类的错误时,为什么程序会崩溃?本质上是因为进程在运行过程中收到了操作系统发来的信号进而被终止,那操作系统是如何识别到一个进程触发了某种问题的呢?

我们知道,CPU当中有一堆的寄存器,当我们需要对两个数进行算术运算时,我们是先将这两个操作数分别放到两个寄存器当中,然后进行算术运算并把结果写回寄存器当中。此外,CPU当中还有一组寄存器叫做状态寄存器,它可以用来标记当前指令执行结果的各种状态信息,如有无进位、有无溢出等等。而操作系统是软硬件资源的管理者,在程序运行过程中,若操作系统发现CPU内的某个状态标志位被置位,而这次置位就是因为出现了某种除0错误而导致的,那么此时操作系统就会马上识别到当前是哪个进程导致的该错误,并将所识别到的硬件错误包装成信号发送给目标进程,本质就是操作系统去直接找到这个进程的task_struct,并向该进程的位图中写入8信号,写入8号信号后这个进程就会在合适的时候被终止。

那对于下面的野指针问题,或者越界访问的问题时,操作系统又是如何识别到的呢?

首先我们必须知道的是,当我们要访问一个变量时,一定要先经过页表的映射,将虚拟地址转换成物理地址,然后才能进行相应的访问操作。

在这里插入图片描述
其中页表属于一种软件映射关系,而实际上在从虚拟地址到物理地址映射的时候还有一个硬件叫做MMU,它是一种负责处理CPU的内存访问请求的计算机硬件,因此映射工作不是由CPU做的,而是由MMU做的,但现在MMU已经集成到CPU当中了。

当需要进行虚拟地址到物理地址的映射时,我们先将页表的左侧的虚拟地址导给MMU,然后MMU会计算出对应的物理地址,我们再通过这个物理地址进行相应的访问。

而MMU既然是硬件单元,那么它当然也有相应的状态信息,当我们要访问不属于我们的虚拟地址时,MMU在进行虚拟地址到物理地址的转换时就会出现错误,然后将对应的错误写入到自己的状态信息当中,这时硬件上面的信息也会立马被操作系统识别到,进而将对应进程发送SIGSEGV信号。

C/C++程序会崩溃,是因为程序当中出现的各种错误最终一定会在硬件层面上有所表现,进而会被操作系统识别到,然后操作系统就会发送相应的信号将当前的进程终止。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/151921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

194: vue+openlayers 根据卫星lat,lon,alt,俯仰角,方位角,绘制地面的拍摄的区域

第194个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+openlayers项目中研究卫星的拍摄范围。 根据卫星的高度,经度,纬度,方位角,俯仰角以及拍摄的幅宽,幅长等参数,绘制拍摄的矩形框和中心点。这里用到了一些公式,参考代码,尤其是大部分使用的是弧度而非角度,需…

青铜到王者,8本最好的Python从入门到进阶的书

春节长假还有1周了&#xff0c;是时候囤一些书充充电了&#xff01;新的一年群里很多小伙伴开始想学Python&#xff0c; 无论是准备转行的&#xff0c;还是想多学一份技能提高职场竞争力的&#xff0c;都想选择Python赛道&#xff0c;下面给大家推荐一些非常不错的Python入门到…

联合证券|利好叠加有望实质兑现 机构加码布局装修建材

组织加码布局装饰建材板块。据了解&#xff0c;受房地产利好方针带动、职业竞赛格式持续改进及原材料本钱下降等多重利好叠加&#xff0c;装饰建材板块有望迎来实质性利好&#xff0c;虽然曩昔两个多月来相关公司有所反弹&#xff0c;但组织以为行情仍然在路上。 多重利好推进 …

架构设计---高可用的处理

前言&#xff1a; 系统的高可用架构就是要在上述各种故障情况下&#xff0c;保证系统依然可用提供服务&#xff0c;具体包括以下几种架构方案。 冗余备份&#xff1a; 各种服务器故障是不可避免的&#xff0c;架构设计上就要保证&#xff0c;当服务器故障的时候&#xff0c;…

简短通俗理解动态规划算法--最短路径问题

问题&#xff1a;从某顶点出发&#xff0c;沿图的边到达另一顶点所经过的路径中&#xff0c;各边上权值之和最小的一条路径——最短路径。在博客动态规划算法中介绍了动态规划的基本思想已经建立动态规划模型的步骤&#xff0c;下面将其中的方法分析最短路径问题。 最短路径有…

CBAM: Convolutional Block Attention Module

https://arxiv.org/pdf/1807.06521.pdf 摘要&#xff1a; 我们提出了卷积块注意模块(CBAM)&#xff0c;一个简单而有效的用于前馈卷积神经网络的注意模块。给定中间特征图&#xff0c;我们的模块依次推导出沿通道和空间两个独立维度的注意图&#xff0c;然后将注意图乘到输入…

vue-seamless-scroll数据量少时,暂停滚动,继续滚动

需求内容 大屏项目&#xff1a;指定dom元素内&#xff0c;如果子元素内容过多&#xff0c;超出父元素的最高高度&#xff0c;可以发生自动滚动&#xff1b;如果子元素内容没有超出父元素的最高高度&#xff0c;不可以发生自动滚动。 . 实现方案 获取数据后并渲染到dom后&am…

并查集的查询与合并详解

文章目录 一、并查集的概念 二、并查集的实现 2、1 并查集不同集合&#xff08;树&#xff09;的形成 2、2 find&#xff08;&#xff09;函数找一个元素集合的编号&#xff08;元素所属于树的祖宗&#xff09; 2、3 合并两个不同集合&#xff08;合并两棵不同的树&#xff09…

SpringCloud学习笔记 - Nacos集群配置和配置持久化

1. 集群架构 要组成集群Nacos必须要有3个或以上的Nacos服务节点&#xff0c;官网推荐在生产服务中使用集群架构。 官网对Nacos集群架构的说明&#xff1a;https://nacos.io/zh-cn/docs/cluster-mode-quick-start.html 总体来说有三种方式可以实现Nacos集群部署&#xff1a; …

恒远模式(flyweight)

简介&#xff1a;共享对象&#xff0c;当一个对象可以被多次利用的时候&#xff0c;并且对象内部相同&#xff0c;这个时候需要考虑让对象进行复用&#xff0c;而不是多次创建结构图&#xff1a;代码就不写了&#xff0c;因为我觉得这东西没啥用&#xff0c;因为一个对象对应的…

技术分享 | 测试平台开发-前端开发之Vue.js 框架

Vue.js 是一套用于构建用户界面的渐进式框架&#xff0c;在目前的前端开放中比较流行的前端框架。Vue 被设计成自底向上的逐层应用。Vue 的核心库只关注视图层&#xff0c;不仅易于上手&#xff0c;还便于与第三方库或已有项目整合。但是学习 Vue.js 需要一定的 HTML、CSS、和 …

指针进阶(3)

tips 1. sizeof的返回类型时size_t。size_t就是为sizeof量身定做的&#xff0c;size_t就是unsigned int 2. strlen碰到\0会停下来&#xff0c;而sizeof则不会&#xff0c;也将其算作一个字符 3. 要注意这么两对东西&#xff1a; scanf()与gets(): \0 , \n , 空格 …

<TCP网络编程>——《计算机网络》

目录 1.TCP网络程序 1.1 TCP socket API 1.1.1 socket(): 1.1.2 bind():​ 1.1.3 listen(): ​ 1.1.4 accept(): 1.1.5 connect(): 2. 封装 TCP socket 2.1 实现一个简单的英译汉的功能 3.简单的TCP网络程序(多进程版本) 4. 简单的TCP网络程序(多线程版本) 5. 线程…

SpringBoot自定义MessageConvert

目录 前言 原理 实现 拓展 前言 对于页面携带的请求头中的AcceptSpringBoot有对应的10种MessageConvert可以支持写出对应的媒体类型&#xff0c;比如application/xml、application/json…… 我们还可以通过向容器放入一个WebMvcConfigurer 实现定制化SpingMVC&#xff0…

Android 深入系统完全讲解(7)

7 如何调试代码&#xff0c;JNI&#xff0c;Framework,APP 调试技巧是我在每入职一家新公司&#xff0c;都会给大家分享的。在 MTK 官方培训还是需要编译才能调试的时候&#xff0c;我无意中调试 MMS 代码&#xff0c;发现跟进了系统代码&#xff0c;调试了相关的匹配搜索子串代…

Java多线程(一)——Hotspot的锁( Synchronized)

1. 锁的概念 Java语言为了解决并发编程中存在的原子性、可见性和有序性问题&#xff0c;提供了一系列和并发处理相关的关键字&#xff0c;比如synchronized、volatile、final、concurren包等 2. Synchronized的基本使用 synchronized是Java提供的一个并发控制的关键字。主要…

【LINUX】工具篇--gcc的使用

我们知道&#xff0c;在程序翻译的过程中一般会经过四个步骤预处理头文件展开&#xff0c;条件编译&#xff0c;宏替换&#xff0c;去注释编译C语言代码--->汇编代码汇编汇编代码--->可重定向目标二进制文件(只把自己写的函数形成二进制文件&#xff0c;此阶段无法被执行…

Vue3一学就会系列:02 模板语法与计算属性

系列文章目录 Vue3一学就会系列&#xff1a;01 vue3安装与搭建项目 文章目录系列文章目录文本插值html 插入属性绑定常用指令计算属性总结文本插值 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; 知识点&#xff1a; {{}}…

(考研湖科大教书匠计算机网络)第一章概述-第二节:三种交换方式(电路交换、报文交换和分组交换)

文章目录一&#xff1a;电路交换&#xff08;Circuit Switching&#xff09;二&#xff1a;分组交换&#xff08;Packet Switching&#xff09;三&#xff1a;报文交换&#xff08;Message Switching&#xff09;四&#xff1a;三种交换方式对比&#xff08;1&#xff09;概述&…

一个自定义的html5视频播放器

// 功能:// 1.视频的播放与暂停(图标变化)// 2.总时间的显示// 3.当前时间的显示(进度)// 4.进度条的显示// 5.跳跃播放// 6.全屏<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport"…