深度学习_GoogLeNet_4

news2024/9/24 9:22:48

目标

  • 知道GoogLeNet网络结构的特点
  • 能够利用GoogLeNet完成图像分类

一、开发背景
GoogLeNet在2014年由Google团队提出, 斩获当年ImageNet(ILSVRC14)竞赛中Classification Task (分类任务) 第一名,VGG获得了第二名,为了向“LeNet”致敬,因此取名为“GoogLeNet”。

GoogLeNet做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多。GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择,从模型结果来看,GoogLeNet的性能也更加优越。

GoogLeNet的名字不是GoogleNet,而是GoogLeNet,这是为了致敬LeNet。GoogLeNet和AlexNet/VGGNet这类依靠加深网络结构的深度的思想不完全一样。GoogLeNet在加深度的同时做了结构上的创新,引入了一个叫做Inception的结构来代替之前的卷积加激活的经典组件。GoogLeNet在ImageNet分类比赛上的Top-5错误率降低到了6.7%。

1.Inception 块

GoogLeNet中的基础卷积块叫作Inception块,得名于同名电影《盗梦空间》(Inception)。Inception块在结构比较复杂,如下图所示:

Inception块里有4条并行的线路。前3条线路使用窗口大小分别是1×11×1、3×33×3和5×55×5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1×11×1卷积来减少输入通道数,以降低模型复杂度。第4条线路则使用3×33×3最大池化层,后接1×11×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并向后进行传输。

1×11×1卷积

它的计算方法和其他卷积核一样,唯一不同的是它的大小是1×11×1,没有考虑在特征图局部信息之间的关系。

它的作用主要是:

  • 实现跨通道的交互和信息整合

  • 卷积核通道数的降维和升维,减少网络参数

在tf.keras中实现Inception模块,各个卷积层卷积核的个数通过输入参数来控制,如下所示

# 定义Inception模块
class Inception(tf.keras.layers.Layer):
    # 输入参数为各个卷积的卷积核个数
    def __init__(self, c1, c2, c3, c4):
        super().__init__()
        # 线路1:1 x 1卷积层,激活函数是RELU,padding是same
        self.p1_1 = tf.keras.layers.Conv2D(
            c1, kernel_size=1, activation='relu', padding='same')
        # 线路2,1 x 1卷积层后接3 x 3卷积层,激活函数是RELU,padding是same
        self.p2_1 = tf.keras.layers.Conv2D(
            c2[0], kernel_size=1, padding='same', activation='relu')
        self.p2_2 = tf.keras.layers.Conv2D(c2[1], kernel_size=3, padding='same',
                                           activation='relu')
        # 线路3,1 x 1卷积层后接5 x 5卷积层,激活函数是RELU,padding是same
        self.p3_1 = tf.keras.layers.Conv2D(
            c3[0], kernel_size=1, padding='same', activation='relu')
        self.p3_2 = tf.keras.layers.Conv2D(c3[1], kernel_size=5, padding='same',
                                           activation='relu')
        # 线路4,3 x 3最大池化层后接1 x 1卷积层,激活函数是RELU,padding是same
        self.p4_1 = tf.keras.layers.MaxPool2D(
            pool_size=3, padding='same', strides=1)
        self.p4_2 = tf.keras.layers.Conv2D(
            c4, kernel_size=1, padding='same', activation='relu')
    # 完成前向传播过程
    def call(self, x):
        # 线路1
        p1 = self.p1_1(x)
        # 线路2
        p2 = self.p2_2(self.p2_1(x))
        # 线路3
        p3 = self.p3_2(self.p3_1(x))
        # 线路4
        p4 = self.p4_2(self.p4_1(x))
        # 在通道维上concat输出
        outputs = tf.concat([p1, p2, p3, p4], axis=-1)
        return outputs  

指定通道数,对Inception模块进行实例化:

Inception(64, (96, 128), (16, 32), 32)

2.GoogLeNet模型

GoogLeNet主要由Inception模块构成,如下图所示:

整个网络架构我们分为五个模块,每个模块之间使用步幅为2的3×33×3最大池化层来减小输出高宽。

2.1 B1模块

第一模块使用一个64通道的7×77×7卷积层。

# 定义模型的输入
inputs = tf.keras.Input(shape=(224,224,3),name = "input")
# b1 模块
# 卷积层7*7的卷积核,步长为2,pad是same,激活函数RELU
x = tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same', activation='relu')(inputs)
# 最大池化:窗口大小为3*3,步长为2,pad是same
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
# b2 模块

2.2 B2模块

第二模块使用2个卷积层:首先是64通道的1×11×1卷积层,然后是将通道增大3倍的3×33×3卷积层。

# b2 模块
# 卷积层1*1的卷积核,步长为2,pad是same,激活函数RELU
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same', activation='relu')(x)
# 卷积层3*3的卷积核,步长为2,pad是same,激活函数RELU
x = tf.keras.layers.Conv2D(192, kernel_size=3, padding='same', activation='relu')(x)
# 最大池化:窗口大小为3*3,步长为2,pad是same
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

2.3 B3模块

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=25664+128+32+32=256。第二个Inception块输出通道数增至128+192+96+64=480

# b3 模块
# Inception
x = Inception(64, (96, 128), (16, 32), 32)(x)
# Inception
x = Inception(128, (128, 192), (32, 96), 64)(x)
# 最大池化:窗口大小为3*3,步长为2,pad是same
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

2.4 B4模块

第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是192+208+48+64=512192+208+48+64=512、160+224+64+64=512160+224+64+64=512、128+256+64+64=512128+256+64+64=512、112+288+64+64=528112+288+64+64=528和256+320+128+128=832256+320+128+128=832。并且增加了辅助分类器,根据实验发现网络的中间层具有很强的识别能力,为了利用中间层抽象的特征,在某些中间层中添加含有多层的分类器,如下图所示:

实现如下所示:

def aux_classifier(x, filter_size):
    #x:输入数据,filter_size:卷积层卷积核个数,全连接层神经元个数
    # 池化层
    x = tf.keras.layers.AveragePooling2D(
        pool_size=5, strides=3, padding='same')(x)
    # 1x1 卷积层
    x = tf.keras.layers.Conv2D(filters=filter_size[0], kernel_size=1, strides=1,
                               padding='valid', activation='relu')(x)
    # 展平
    x = tf.keras.layers.Flatten()(x)
    # 全连接层1
    x = tf.keras.layers.Dense(units=filter_size[1], activation='relu')(x)
    # softmax输出层
    x = tf.keras.layers.Dense(units=10, activation='softmax')(x)
    return x

b4模块的实现:

# b4 模块
# Inception
x = Inception(192, (96, 208), (16, 48), 64)(x)
# 辅助输出1
aux_output_1 = aux_classifier(x, [128, 1024])
# Inception
x = Inception(160, (112, 224), (24, 64), 64)(x)
# Inception
x = Inception(128, (128, 256), (24, 64), 64)(x)
# Inception
x = Inception(112, (144, 288), (32, 64), 64)(x)
# 辅助输出2
aux_output_2 = aux_classifier(x, [128, 1024])
# Inception
x = Inception(256, (160, 320), (32, 128), 128)(x)
# 最大池化
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

2.5 B5模块

第五模块有输出通道数为256+320+128+128=832256+320+128+128=832和384+384+128+128=1024384+384+128+128=1024的两个Inception块。后面紧跟输出层,该模块使用全局平均池化层(GAP)来将每个通道的高和宽变成1。最后输出变成二维数组后接输出个数为标签类别数的全连接层。

全局平均池化层(GAP)

用来替代全连接层,将特征图每一通道中所有像素值相加后求平均,得到就是GAP的结果,在将其送入后续网络中进行计算

实现过程是:

# b5 模块
# Inception
x = Inception(256, (160, 320), (32, 128), 128)(x)
# Inception
x = Inception(384, (192, 384), (48, 128), 128)(x)
# GAP
x = tf.keras.layers.GlobalAvgPool2D()(x)
# 输出层
main_outputs = tf.keras.layers.Dense(10,activation='softmax')(x)
# 使用Model来创建模型,指明输入和输出

构建GoogLeNet模型并通过summary来看下模型的结构:

# 使用Model来创建模型,指明输入和输出
model = tf.keras.Model(inputs=inputs, outputs=[main_outputs,aux_output_1,aux_output_2]) 
model.summary()

Model: "functional_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input (InputLayer) [(None, 224, 224, 3)] 0 _________________________________________________________________ conv2d_122 (Conv2D) (None, 112, 112, 64) 9472 _________________________________________________________________ max_pooling2d_27 (MaxPooling (None, 56, 56, 64) 0 _________________________________________________________________ conv2d_123 (Conv2D) (None, 56, 56, 64) 4160 _________________________________________________________________ conv2d_124 (Conv2D) (None, 56, 56, 192) 110784 _________________________________________________________________ max_pooling2d_28 (MaxPooling (None, 28, 28, 192) 0 _________________________________________________________________ inception_19 (Inception) (None, 28, 28, 256) 163696 _________________________________________________________________ inception_20 (Inception) (None, 28, 28, 480) 388736 _________________________________________________________________ max_pooling2d_31 (MaxPooling (None, 14, 14, 480) 0 _________________________________________________________________ inception_21 (Inception) (None, 14, 14, 512) 376176 _________________________________________________________________ inception_22 (Inception) (None, 14, 14, 512) 449160 _________________________________________________________________ inception_23 (Inception) (None, 14, 14, 512) 510104 _________________________________________________________________ inception_24 (Inception) (None, 14, 14, 528) 605376 _________________________________________________________________ inception_25 (Inception) (None, 14, 14, 832) 868352 _________________________________________________________________ max_pooling2d_37 (MaxPooling (None, 7, 7, 832) 0 _________________________________________________________________ inception_26 (Inception) (None, 7, 7, 832) 1043456 _________________________________________________________________ inception_27 (Inception) (None, 7, 7, 1024) 1444080 _________________________________________________________________ global_average_pooling2d_2 ( (None, 1024) 0 _________________________________________________________________ dense_10 (Dense) (None, 10) 10250 ================================================================= Total params: 5,983,802 Trainable params: 5,983,802 Non-trainable params: 0 ___________________________________________________________

3.手写数字识别

因为ImageNet数据集较大训练时间较长,我们仍用前面的MNIST数据集来演示GoogLeNet。读取数据的时将图像高和宽扩大到图像高和宽224。这个通过tf.image.resize_with_pad来实现。

2.1 数据读取

首先获取数据,并进行维度调整:

import numpy as np
# 获取手写数字数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 训练集数据维度的调整:N H W C
train_images = np.reshape(train_images,(train_images.shape[0],train_images.shape[1],train_images.shape[2],1))
# 测试集数据维度的调整:N H W C
test_images = np.reshape(test_images,(test_images.shape[0],test_images.shape[1],test_images.shape[2],1))

由于使用全部数据训练时间较长,我们定义两个方法获取部分数据,并将图像调整为224*224大小,进行模型训练:(与VGG中是一样的)

# 定义两个方法随机抽取部分样本演示
# 获取训练集数据
def get_train(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(train_images)[0], size)
    # 将这些数据resize成22*227大小
    resized_images = tf.image.resize_with_pad(train_images[index],224,224,)
    # 返回抽取的
    return resized_images.numpy(), train_labels[index]
# 获取测试集数据 
def get_test(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(test_images)[0], size)
    # 将这些数据resize成224*224大小
    resized_images = tf.image.resize_with_pad(test_images[index],224,224,)
    # 返回抽样的测试样本
    return resized_images.numpy(), test_labels[index]

调用上述两个方法,获取参与模型训练和测试的数据集:

# 获取训练样本和测试样本
train_images,train_labels = get_train(256)
test_images,test_labels = get_test(128)

3.2 模型编译

# 指定优化器,损失函数和评价指标
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.0)
# 模型有3个输出,所以指定损失函数对应的权重系数
net.compile(optimizer=optimizer,
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'],loss_weights=[1,0.3,0.3])

3.3 模型训练

# 模型训练:指定训练数据,batchsize,epoch,验证集
net.fit(train_images,train_labels,batch_size=128,epochs=3,verbose=1,validation_split=0.1)

训练过程:

Epoch 1/3 2/2 [==============================] - 8s 4s/step - loss: 2.9527 - accuracy: 0.1174 - val_loss: 3.3254 - val_accuracy: 0.1154 Epoch 2/3 2/2 [==============================] - 7s 4s/step - loss: 2.8111 - accuracy: 0.0957 - val_loss: 2.2718 - val_accuracy: 0.2308 Epoch 3/3 2/2 [==============================] - 7s 4s/step - loss: 2.3055 - accuracy: 0.0957 - val_loss: 2.2669 - val_accuracy: 0.2308

2.4 模型评估

# 指定测试数据
net.evaluate(test_images,test_labels,verbose=1)

输出为:

4/4 [==============================] - 1s 338ms/step - loss: 2.3110 - accuracy: 0.0781 [2.310971260070801, 0.078125]

4.延伸版本

GoogLeNet是以InceptionV1为基础进行构建的,所以GoogLeNet也叫做InceptionNet,在随后的⼏年⾥,研究⼈员对GoogLeNet进⾏了数次改进, 就又产生了InceptionV2,V3,V4等版本。

4.1 InceptionV2

在InceptionV2中将大卷积核拆分为小卷积核,将V1中的5×55×5的卷积用两个3×33×3的卷积替代,从而增加网络的深度,减少了参数。

4.2 InceptionV3

将n×n卷积分割为1×n和n×1两个卷积,例如,一个的3×33×3卷积首先执行一个1×31×3的卷积,然后执行一个3×13×1的卷积,这种方法的参数量和计算量都比原来降低。

总结

  • 知道GoogLeNet的网络架构:有基础模块Inception构成
  • 能够利用GoogleNet完成图像分类

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

下面是另一个代码实现GooLeNet网络模型构建和之前代码不冲突

GooLeNet代码实现

展示模型搭建代码

import torch
import torch.nn as nn
import torch.nn.functional as F
 
#conv+ReLU
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU()
 
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x
 
#前部
class Front(nn.Module):
    def __init__(self):
        super(Front, self).__init__()
 
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2,ceil_mode=True)
 
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2,ceil_mode=True)
 
    def forward(self,input):
        #输入:(N,3,224,224)
        x = self.conv1(input)#(N,64,112,112)
        x = self.maxpool1(x)#(N,64,56,56)
        x = self.conv2(x)#(N,64,56,56)
        x = self.conv3(x)#(N,192,56,56)
        x = self.maxpool2(x)#(N,192,28,28)
        return x
 
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_1_1, ch3x3_1, ch3x3_2_1, ch3x3_2, pool_ch):
        super(Inception, self).__init__()
 
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
 
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3_1_1, kernel_size=1),
            BasicConv2d(ch3x3_1_1, ch3x3_1, kernel_size=3, padding=1)
        )
 
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3_2_1, kernel_size=1),
            BasicConv2d(ch3x3_2_1, ch3x3_2, kernel_size=3, padding=1)
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_ch, kernel_size=1)
        )
 
    def forward(self, x):
        #输入(N,Cin,Hin,Win)
        branch1 = self.branch1(x)#(N,C1,Hin,Win)
        branch2 = self.branch2(x)#(N,C2,Hin,Win)
        branch3 = self.branch3(x)#(N,C3,Hin,Win)
        branch4 = self.branch4(x)#(N,C4,Hin,Win)
        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)#(N,C1+C2+C3+C4,Hin,Win)
 
#辅助分类器
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
 
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
 
    def forward(self, x):
        # 输入:aux1:(N,512,14,14), aux2: (N,528,14,14)
        x = self.averagePool(x)# aux1:(N,512,4,4), aux2: (N,528,4,4)
        x = self.conv(x)# (N,128,4,4)
        x = torch.flatten(x, 1)# (N,2048)
        x = F.dropout(x, 0.5, training=self.training)
        x = F.relu(self.fc1(x))# (N,1024)
        x = F.dropout(x, 0.5, training=self.training)
        x = self.fc2(x)# (N,num_classes)
        return x
 
# GooLeNet网络主体
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
 
        self.front = Front()
 
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2,ceil_mode=True)
 
        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2,ceil_mode=True)
 
        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
 
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)
 
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
 
    def forward(self, x):
        #输入:(N,3,224,224)
        x = self.front(x)#(N,192,28,28)
        x = self.inception3a(x)#(N,256,28,28)
        x = self.inception3b(x)#(N,480,28,28)
        x = self.maxpool3(x)#(N,480,14,14)
        x = self.inception4a(x)#(N,512,14,14)
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)
 
        x = self.inception4b(x)#(N,512,14,14)
        x = self.inception4c(x)#(N,512,14,14)
        x = self.inception4d(x)#(N,528,14,14)
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)
 
        x = self.inception4e(x)#(N,832,14,14)
        x = self.maxpool4(x)#(N,832,7,7)
        x = self.inception5a(x)#(N,832,7,7)
        x = self.inception5b(x)#(N,1024,7,7)
 
        x = self.avgpool(x)#(N,1024,1,1)
        x = torch.flatten(x, 1)#(N,1024)
        x = self.dropout(x)
        x = self.fc(x)#(N,num_classes)
        if self.training and self.aux_logits:
            return x, aux2, aux1
        return x

使用 Pytorch 搭建 GoogleNet 网络

本代码使用的数据集来自 “花分类” 数据集,→ 传送门 ←(具体内容看 data_set文件夹下的 README.md)

  • model.py ( 搭建 GoogleNet 网络模型 )
import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogleNet(nn.Module):
    # aux_logits: 是否使用辅助分类器(训练的时候为True, 验证的时候为False)
    def __init__(self, num_classes=1000, aux_logits=True, init_weight=False):
        super(GoogleNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)   # 当结构为小数时,ceil_mode=True向上取整,=False向下取整
        # nn.LocalResponseNorm (此处省略)
        self.conv2 = nn.Sequential(
            BasicConv2d(64, 64, kernel_size=1),
            BasicConv2d(64, 192, kernel_size=3, padding=1)
        )
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if aux_logits:      # 使用辅助分类器
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool1d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)

        if init_weight:
            self._initialize_weight()

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)

        x = self.inception3a(x)
        x = self.inception3b(x)
        x =self.maxpool3(x)

        x =self.inception4a(x)
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)
        x = self.inception4b(x)
        x = self.inception4c(x)
        x = self.inception4d(x)
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)
        x = self.inception4e(x)
        x =self.maxpool4(x)

        x = self.inception5a(x)
        x = self.inception5b(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.dropout(x)
        x = self.fc(x)

        if self.training and self.aux_logits:
            return x, aux1, aux2
        return x


    def _initialize_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)






# 创建 Inception 结构函数(模板)
class Inception(nn.Module):
    # 参数为 Inception 结构的那几个卷积核的数量(详细见表)
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()
        # 四个并联结构
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)


# 创建辅助分类器结构函数(模板)
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.avgPool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14   aux2: N x 528 x 14 x 14(输入)
        x = self.avgPool(x)
        # aux1: N x 512 x 4 x 4  aux2: N x 528 x 4 x 4(输出) 4 = (14 - 5)/3 + 1
        x = self.conv(x)
        x = torch.flatten(x, 1)     # 展平
        x = F.dropout(x, 0.5, training=self.training)
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        x = self.fc2(x)
        return x


# 创建卷积层函数(模板)
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x


  • train.py ( 训练网络 )
import os
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from model import GoogleNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))


    net = GoogleNet(num_classes=5, aux_logits=True, init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0003)

    epochs = 30
    best_acc = 0.0
    save_path = './googleNet.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = net(images.to(device))   # 由于训练的时候会使用辅助分类器,所有相当于有三个返回结果
            loss0 = loss_function(logits, labels.to(device))
            loss1 = loss_function(aux_logits1, labels.to(device))
            loss2 = loss_function(aux_logits2, labels.to(device))
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))  # eval model only have last output layer
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()
  • predict.py ( 使用训练好的模型网络对图像分类 )
import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import GoogleNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = GoogleNet(num_classes=5, aux_logits=False).to(device)

    # load model weights
    weights_path = "./googleNet.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    missing_keys, unexpected_keys = model.load_state_dict(torch.load(weights_path, map_location=device),
                                                          strict=False)

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    print(print_res)
    plt.show()


if __name__ == '__main__':
    main()

参考文章:【学习笔记】GoogleNet 网络结构_googlenet特点-CSDN博客

参考文章:GoogLeNet详解-CSDN博客

参考文章:CNN经典网络模型(四):GoogLeNet简介及代码实现(PyTorch超详细注释版)_googlenet代码-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1518005.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

不同抓手的码垛机:适配多元应用场景的灵活之选

在现代工业生产中,码垛机作为一种高效、自动化的物料搬运设备,已经广泛应用于各个行业。而抓手作为码垛机的关键部件,其种类的多样性和适用场景的广泛性,使得不同抓手的码垛机能够满足各种复杂、多变的生产需求。 首先&#xff0c…

蓝桥杯单片机快速开发笔记——LED、蜂鸣器和继电器

一、原理分析 二、简单示例 总结:HC138令Y5C等于1后,通过控制P0^4、P0^6置1打开、置0关闭,便可以控制继电器和蜂鸣器,具体看上述的原理分析,LED同理通过给P0置0便可以控制LED点亮,利用本专栏上一节知识即可简单控制 …

vue 引用百度地图

address.vue <template><div><!-- 地图 --><el-drawer:visible.sync"type1"direction"rtl"size"50%"append-to-bodyclass"map-drawer":before-close"beforeClose"><div style"width: 100%…

Linux学习笔记(一)Linux基本指令

文章目录 前言目录常见命令1. pwd 打印当前所在路径2. cd 改变路径、切换路径3. 家目录 回到顶级目录4. 当前路径和上一路径5. 上一次路径6. 绝对路径和相对路径7. ls 列出目录内容8. mkdir 创建目录9. rmdir 删除目录10. touch 创建文件11. mv 修改文件目录、移动路径12. cp 复…

Vue3基础笔记(1)模版语法 属性绑定 渲染

Vue全称Vue.js是一种渐进式的JavaScript框架&#xff0c;采用自底向上增量开发的设计&#xff0c;核心库只关注视图层。性能丰富&#xff0c;完全有能力驱动采用单文件组件和Vue生态系统支持的库开发的复杂单页应用&#xff0c;适用于场景丰富的web前端框架。灵活性和可逐步集成…

一周学会Django5 Python Web开发-Jinja3模版引擎-模板语法

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计37条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

Linux系统架构----Tomcat 部署

一.Tomcat概述 Tomcat服务器是一个免费的开放式源代码的web应用服务器&#xff0c;属于轻量级应用级服务器&#xff0c;在中小型系统和并发访问用户不是很多的场合下被普遍使用&#xff0c;是开发和调试JSP程序的首首选。 一般来说&#xff0c;tomcat虽然和Apache或者Nginx这些…

ThingsBoard 开源物联网平台

文章目录 1.ThingsBoard 介绍2.ThingsBoard 架构2.1.单体架构2.2.微服务架构 3.物联网网关4.边缘计算 ThingsBoard # ThingsBoardhttps://iothub.org.cn/docs/iot/ https://iothub.org.cn/docs/iot/thingsboard-ce/1.ThingsBoard 介绍 ThingsBoard 是一个开源物联网平台&…

MySQL 数据库 下载地址 国内阿里云站点

mysql安装包下载_开源镜像站-阿里云 以 MySQL 5.7 为例 mysql-MySQL-5.7安装包下载_开源镜像站-阿里云

C++ 拷贝构造函数和运算符重载

目录 一. 拷贝构造函数 1. 引入 2. 拷贝构造的概念 3. 浅拷贝 4. 深拷贝 二. C运算符重载 1. 概念 2. 注意事项 3.举例 一. 拷贝构造函数 1. 引入 我们在创建对象时&#xff0c;能不能创建一个与原先对象一模一样的新对象呢&#xff1f;为了解决这个问题&#x…

Qt/QML编程之路:基于QWidget编程及各种2D/3D/PIC绘制的示例(45)

关于使用GWidget,这里有一个示例,看了之后很多图形绘制,控件使用,及最基本的QWidget编程都比较清楚了。ui的绘制: 运行后的界面如 工程中有非常丰富的关于各种图形的绘制,比如上图中circle,还有image。有下面一段readme的说明: # EasyQPainter Various operation pra…

java数据结构与算法刷题-----LeetCode47. 全排列 II

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 暴力回溯2. 分区法回溯 此题为46题的衍生题&#xff0c;在46题…

QT c++ 双精度数拆分和组合 Tool

本文描述QT c的双精度数拆分和合并&#xff0c;即双精度浮点数拆为四个16位无符号整数以及将四个16位无符号整数组合为双精度浮点数。 开发平台&#xff1a;win10QT6.2.4 MSVC2019 64 bit 在本文的最好列出了代码和可执行文件打包下载链接&#xff08;可直接使用&#xff09;…

【数学】【计算几何】1453. 圆形靶内的最大飞镖数量

作者推荐 视频算法专题 本文涉及知识点 数学 计算几何 LeetCoce:1453. 圆形靶内的最大飞镖数量 Alice 向一面非常大的墙上掷出 n 支飞镖。给你一个数组 darts &#xff0c;其中 darts[i] [xi, yi] 表示 Alice 掷出的第 i 支飞镖落在墙上的位置。 Bob 知道墙上所有 n 支飞…

“计算机行业的未来:政策导向、技术创新与发展前景“

从政府工作报告探计算机行业发展 政府工作报告作为政府工作的全面总结和未来规划&#xff0c;不仅反映了国家整体的发展态势&#xff0c;也为各行各业提供了发展的指引和参考。随着信息技术的快速发展&#xff0c;计算机行业已经成为推动经济社会发展的重要引擎之一。因此&…

Hack The Box-Monitored

目录 信息收集 rustscan dirsearch WEB web信息收集 snmpwalk curl POST身份验证 漏洞探索 漏洞挖掘 sqlmap 登录后台 提权 get user get root 信息收集 rustscan ┌──(root㉿ru)-[~/kali/hackthebox] └─# rustscan -b 2250 10.10.11.248 --range0-65535 --…

攻防世界-misc-arrdeepee

题目链接:攻防世界 (xctf.org.cn) 题目:我们某一个box被pwn了。在检查过程中,我们发现了一个叫mimikatz的东西,我们以前没有安装过,所以我们清除了,并且重新安装了box。但是,我们忘记备份我们的flag文件了。幸运的是,我们有一个攻击者网络流量捕获。你可以帮我们恢复出…

第12集《天台教观纲宗》

请大家打开讲义第二十一页&#xff0c;我们看己二、明稍利随时得入。 蕅益大师在《弥陀要解》讲一个很重要的概念&#xff0c;提醒所有净土宗的行者&#xff0c;他说&#xff1a;方便有多门&#xff0c;归元无二路。学佛它有两个概念&#xff1a;一个是方便&#xff0c;一个是归…

Android 录屏操作

Android 录屏操作 本文主要介绍android中如何通过MediaRecorder实现录屏操作的. 1: 申请权限 <uses-permission android:name"android.permission.RECORD_AUDIO" /> <uses-permission android:name"android.permission.WRITE_EXTERNAL_STORAGE"…

vue3动态组件未渲染问题

渲染问题 component动态组件写法与vue2写法一致&#xff0c;代码如下&#xff1a; <component :is"componentName"/><script setup>import { ref } from vueimport account from ./user/account.vue// 组件名称const componentName ref(account)// 点击…