前言
作者:小蜗牛向前冲
名言:我可以接受失败,但我不能接受放弃
如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正
目录
一、认识索引
1、为什么要有索引
2、什么是索引
二、索引实现的基础
1、认识磁盘
2、MySQL 与磁盘交互基本单位
三、索引的实现
1、理解单个Page
2、理解多个Page
3、聚簇索引 VS 非聚簇索引
四、索引操作
1、创建主键索引
2、唯一索引的创建
3、普通索引的创建
4、全文索引的创建
5、索引的其他知识
本期学习:索引由来,索引是怎么实现的,索引的创建,删除和信息的查询
一、认识索引
1、为什么要有索引
大家可能想象这么一个场景,假设我们现在存放了8百万条用户数据到mysql中,我们要查找最后几条数据,正常来说我们不知道这个用户数据在哪里,那大家可能是从第条用户数据开始找,直到我们找到为止,也就是说我们要遍历8百万条数据才可以的得到自己想要的结果。
下面我们用where条件进行筛选查询:
发现用了5秒,但是这只是一层IO啊,如果我们高频率访问数据库这样的效率肯定是不可以的。
但是我们却可以帮empno编号加上索引。
创建索引
alter table EMP add index(empno);
在次查询:
2、什么是索引
在上面我们创建了索引,在索引的帮助下查找效率几个量级。那为什么会这样呢?其实我们可以把mysql理解为一个本书,用户数据就是书中的文字,我们知道书多是目录的,当我们想要查询书中具体章节可以通过目录查找到对应的页码,从而找到对应的章节。
而在mysql的索引也就相当于书的目录,所以通过索引可以快速的找到我们想要的内容。
对于我们程序员,理解到这个层次肯定是不够的,虽然说我们表面上把数据存放在mysql中,但是其实仍然要通过操作系统存放在磁盘上。
提高算法的查找效率无外乎在:组织数据的方式上(各种数据结构),算法本身(二分,快排)。
索引也不列外,但是本文只想讨论组织结构对索引的影响。
为了更好的理解mysql的存储原理,我们还要简单的了解其在硬件上的存放。
二、索引实现的基础
1、认识磁盘
MySQL与存储
MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,那么如何提交效率便成为是 MySQL 的一个重要话题。
磁盘结构
扇区 :
数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。
- 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大 那么,所有扇区都是默认512字节吗?
- 目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的。
- 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑
我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。(当然,有一些内存文件系统,如: proc , sys 之类,我们不考虑)
所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区。 而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的
- 柱面(磁道):多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面
- 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
- 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编 号。即可在磁盘上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用 的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。不过,我们现在不关心转化细节,知道这个东西,让我们逻辑自洽起来即可。
结论:
我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区 (512字节,部分4096字节),进行IO交互吗?不是
- 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言 之,如果硬件发生变化,系统必须跟着变化 从目前来看,单次IO 512字节,还是太小了。
- IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。
故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。
磁盘随机访问(Random Access)与连续访问(Sequential Access)
- 随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需 要作比较大的移动动作才能重新开始读/写数据。
- 连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次 IO操作,这样的多个IO操作称为连续访问。
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。
磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。
通过上面的认识,我们认识到在物理层面上,如果我们想要选择文件,必须通过磁盘读取的方式获得,而且系统每次读取磁盘的io大小为4KB,是一块一块的读取数据(这里不需要担心,如果我们只要1KB的数据怎么办,这样不就浪费了查找成本,但这是不需要担心的,因为根据计算机的局部存储性原理,下次要用大的数据大概会是3KB的是数据)。
2、MySQL 与磁盘交互基本单位
而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高 基本的IO效率, MySQL 进行IO的基本单位是 16KB。
也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。 即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)
建立共识
- MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
- MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
- 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。 所以在特定时间内,数据一定是磁盘中有,内存中也有。
- 后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位 就是Page。
- 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称 为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进 行IO交互。 为了更高的效率,一定要尽可能的减少系统和磁盘IO的次数
三、索引的实现
1、理解单个Page
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解 成一个个独立文件是有一个或者多个Page构成的。
不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表。
因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。这里可以认为是通过链表将这些数据串联管理起来。
对于于单个page,我们要查找数据,怎么办?
如果我们采取链表遍历的方式,这样是很慢的,因为即使一个page只有16kb=16*1024==16384字节。那可以存放16383/4=4096个整形。
页目录
我们在看《谭浩强C程序设计》这本书的时候,如果我们要看,找到该章节有两种做法
- 从头逐页的向后翻,直到找到目标内容 通过书提供的目录,发现指针章节在234页(假设),那么我们便直接翻到234页。
- 同时,查找目录的 方案,可以顺序找,不过因为目录肯定少,所以可以快速提高定位 本质上,书中的目录,是多花了纸张的,但是却提高了效率 所以,目录,是一种“空间换时间的做法”
所以我们肯定会对这些数据要进行管理,起来,那么也会存在一个目录这样的结构对数据进行快速查找。
在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次, 才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。
但是单个pag也仅仅能管理4千多个整形的数据,那如果数据非常大,又是如何进行管理的。
2、 理解多个Page
- 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一 整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页 模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条 比较来取出特定的数据。
- 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起 来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这 效率也太低了。
MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下 所有的数据,那么必定会有多个页来存储数据。
需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。 这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问 题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到 内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。 那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录
- 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
- 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。 其中,每个目录项的构成是:键值+指针。
存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。
有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。
其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。 可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页
这货就是传说中的B+树啊!没错,至此,我们已经给我们的表user构建完了主键索引。 随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就 提高了。
总结 :
- Page分为目录页和数据页。目录页只放各个下级Page的最小键值。
- 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减 少了IO次数
我们现在知道数据的查找是通过page进行的,也就是索引的搜索是通过page完成,也是说索引的本质是一颗b+树。
b+树的特点:
- 叶子节点保存有数据,路上节点没有,非叶子节点,不要数据,只要目录项非叶子节点,不存数据,可以存储更多的目录项,目录页,可以管理更多的叶子page,这颗树,一定是一个矮胖型的树!
- 一颗矮胖型的树,在查找的时候经过的节点会大大减少,这也就减少了遍历节点的IO,提高了查找效率
3、聚簇索引 VS 非聚簇索引
MyISAM 存储引擎-主键索引 MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引, Col1 为主键。
其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据 的地址。 相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。
create table st(
id int primary key,
name varchar(11) not null
)engine=MyISAM;
这里要在root权限下进入到mysql的目录下,找到创建的目录
cd /var/lib/mysql
- st.frm 里面存放的表结构数据
- st.MYD该表对应的数据,我没有插入所以为0
- st.MYI该表对应的主键索引数据
换一个引擎存储InnoDB
create table st2(
id int primary key,
name varchar(11) not null
)engine=InnoDB;
- st2.frm表结构数据
- st2.ibd表对应的主键索引和用户
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引 当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这 种索引可以叫做辅助(普通)索引。 对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。 下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别
下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助 索引如下图:
可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。
所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键 到主索引中检索获得记录。这种过程,就叫做回表查询 为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间 了。
四、索引操作
1、创建主键索引
第一种方式
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
第二种方式
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
第三种方式
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);
主键索引的特点:
- 一个表中,最多有一个主键索引,当然可以使符合主键
- 主键索引的效率高(主键不可重复)
- 创建主键索引的列,它的值不能为null,且不能重复
- 主键索引的列基本上是int
2、唯一索引的创建
第一种方式
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
第二种方式
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
第三种方式
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);
唯一索引的特点:
- 一个表中,可以有多个唯一索引
- 查询效率高
- 如果在某一列建立唯一索引,必须保证这列不能有重复数据
- 如果一个唯一索引上指定not null,等价于主键索引
3、普通索引的创建
第一种方式
create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
)
第二种方式
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
第三种方式
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);
普通索引的特点:
- 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
- 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引
4、全文索引的创建
当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有 要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进 行全文检索,可以使用sphinx的中文版(coreseek)。
这里我们创建一个表并且对他进行查询
如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引
这是我们正常使用到搜索,并没有用到索引。
可以用explain工具看一下,是否使用到索引,告诉我们mysql执行计划
id
: 查询中的 SELECT 语句的序列号。在这里是 1。select_type
: 查询的类型。在这里是SIMPLE
,表示这是一个简单的 SELECT 查询。table
: 查询涉及的表。在这里是articles
。partitions
: 如果查询涉及分区表,将显示分区信息。在这里是NULL
,表示没有分区。type
: 访问表的方式。在这里是ALL
,表示全表扫描,即没有使用索引。possible_keys
: 显示可能使用的索引。在这里是NULL
,表示没有可用的索引。key
: 实际使用的索引。在这里是NULL
,表示没有使用索引。key_len
: 使用的索引的长度。在这里是NULL
。ref
: 与索引比较的参考。在这里是NULL
。rows
: 估计要检查的行数。在这里是 6。filtered
: 结果集的过滤程度,以百分比表示。在这里是 16.67%。
使用全文索引
select * from articles where match (title,body) against ('database');
5、索引的其他知识
查询索引
第一种方法: show keys from 表名
mysql> show keys from goods\G
*********** 1. row ***********
Table: goods <= 表名
Non_unique: 0 <= 0表示唯一索引
Key_name: PRIMARY <= 主键索引
Seq_in_index: 1
Column_name: goods_id <= 索引在哪列
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE <= 以B+树形式的索引
Comment:
1 row in set (0.00 sec)
第二种方法: show index from 表名;
第三种方法(信息比较简略): desc 表名;
删除索引
- 第一种方法-删除主键索引: alter table 表名 drop primary key;
- 第二种方法-其他索引的删除: alter table 表名 drop index 索引名; 索引名就是show keys from 表名中的 Key_name 字段
- 第三种方法方法: drop index 索引名 on 表名
索引创建原则
- 比较频繁作为查询条件的字段应该创建索引
- 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
- 更新非常频繁的字段不适合作创建索引
- 不会出现在where子句中的字段不该创建索引