游戏数据处理

news2025/1/19 16:59:30

游戏行业关键数据指标

  • ~

    • 总激活码发放量、总激活量、总登录账号数

    • 激活率、激活登录率

      • 激活率 = 激活量 / 安装量

      • 激活率 = 激活量 / 激活码发放量

      • 激活且登录率 = 激活且登录量 / 激活码激活量

 

激活且登录率应用场景

  • 激活且登录率是非常常用的转化率指标之一,广泛用于端游、手游。

  • 大多数游戏公司在游戏封测期间为了限制用户数量,都会进行限量测试,对用户数量进行把控的主要方式就是发放激活码,激活码的激活且登录率反映实际进入游戏的用户数量。

  • 当激活且登录率较低时,想到的是玩家在登录环节是否遇到了困难,主要排查客户端问题,以及是否有服务器维护,如果游戏登录环节没有异常,则该指标能说明玩家对该游戏的兴趣程度。

  • ACU(Average concurrent users)平均同时在线玩家人数

  • PCU(Peak concurrent users)最高同时在线玩家人数

  • 游戏从封测开始,多数公司都会投入固定的内、外部宣传资源作为游戏的初期市场推广,以收集游戏的封测数据,这其中主要就是留存率

  • 无论是端游还是手游,都非常重视这一指标,留存率成为衡量产品质量的重要指标之一,用以判定游戏的基本品质,为后续的市场资源调配提供参考。

  • 游戏封测主要有两种形式,为发放激活码测试和不发放激活码测试,由于发放激活码测试针对的用户群体更偏向核心用户,一般来说,其留存率高于非激活码测试。

游戏行为数据

 职业分布数据:狙击手,突击手

  1. 玩家使用情况:统计并分析狙击手和突击手这两个职业被选择的频率,了解在玩家群体中的普及度。
  2. 胜率贡献:观察每个职业在比赛中的表现,比如胜利贡献、击杀数等指标,以评估其对团队胜率的影响。
  3. 关键行为分析:针对狙击手和突击手的关键行为(如狙击成功率、突破效率)进行数据收集,帮助理解这些行为如何影响游戏结果。
  4. 地图分布:分析不同职业在各个游戏地图上的活动热点,例如在哪些位置进行开枪、购买武器等行为。
  5. 道具和武器使用:研究不同职业偏好的枪械类型及其使用效果,如突破手倾向于使用的AK47或Tec9。
  6. 玩家技能评级:根据个人rating和团队配合情况来评价狙击手和突击手的技能水平及对团队的贡献。

用户付费指标

游戏行为数据的用户付费指标是评估玩家在游戏中消费行为的关键数据点。这些指标可以帮助游戏开发者和运营商了解玩家的付费习惯,从而优化游戏设计、提高收入和改善玩家体验。以下是一些常见的用户付费指标:

  1. 付费转化率(Conversion Rate):付费用户与活跃用户的比率,用于衡量游戏中有多少玩家愿意进行付费。

  2. 每用户平均收入(ARPU - Average Revenue Per User):在一定时期内,游戏从每位用户那里获得的平均收入。

  3. 每付费用户平均收入(ARPPU - Average Revenue Per Paying User):在一定时期内,游戏从每位付费用户那里获得的平均收入。

  4. 用户生命周期价值(LTV - Lifetime Value):预测一个用户在整个游戏生命周期内可能产生的总收入。

  5. 首次付费时间(Day 1 Conversion):用户在首次玩游戏后24小时内完成首次付费的比例。

  6. 累计付费用户(Cumulative Paying Users):在特定时间段内,至少进行过一次付费的用户总数。

  7. 付费深度(Pay Depth):用户在游戏内的付费深度,通常通过分析用户的付费金额分布来衡量。

  8. 付费留存率(Paying User Retention):在特定时间段内,继续进行付费的用户比例。

  9. 重复付费率(Repeat Payment Rate):在特定时间段内,进行了多次付费的用户比例。

  10. 付费用户获取成本(CAC - Customer Acquisition Cost):获取每位付费用户所需的平均成本。

  11. 付费用户流失率(Churn Rate):在特定时间段内,停止付费的用户比例。

  12. 购买行为分布(Purchase Behavior Distribution):用户购买不同类型或价格点商品的频率和数量分布。

  13. 促销响应率(Promotional Response Rate):用户对特定促销活动或优惠的反应和参与度。

  14. 礼品卡/虚拟货币销售:通过礼品卡或虚拟货币产生的销售额。

  15. 跨销售和增销指标(Cross-Sell and Upsell Metrics):衡量用户购买额外商品或服务的情况。

ARPPU=付费金额/付费人数,ARPU低于3元则说明表现较差。

ARPU=付费金额/活跃人数


游戏运营中的转化率漏斗模型是一种分析用户行为和优化用户体验的工具,它包括拉新、促活、留存和付费转化这四个主要环节。以下是对这些环节的详细解释:

  1. 拉新:这是转化率漏斗的第一步,目的是吸引新用户进入游戏。这通常通过广告营销、渠道合作、社交媒体推广等方式实现。有效的拉新策略可以提高游戏的知名度和用户基数。
  2. 促活:一旦用户开始游戏,运营的目标是让用户更频繁、更愉快地玩游戏。这可能涉及到游戏内容的更新、社区活动的举办或者个性化推送等手段,以提高用户的活跃度。
  3. 留存:留存率是衡量用户是否继续使用游戏的指标,包括日留存率、周留存率、月留存率等。高留存率意味着用户对游戏有较高的忠诚度和满意度。留存策略可能包括优化新手引导、提供持续的游戏动力和奖励机制等。
  4. 付费转化:最终目标是将用户转化为付费玩家。这涉及到设计吸引人的内购项目、提供价值感强的付费内容、以及优化支付流程等。付费转化率的高低直接影响游戏的收入模式。

 

转化率漏斗模型帮助游戏运营者了解在每个环节中用户的转化情况,从而找出潜在的问题点和改进机会。通过分析漏斗数据,运营团队可以制定相应的策略来提高整体的用户转化率,进而提升游戏的市场表现和盈利能力。

import numpy as np
import pandas as pd
from pylab import matplotlib as mpl
from matplotlib import pyplot as plt
import seaborn as sns
from datetime import datetime
mpl.rcParams['font.sans-serif'] = ['Simhei']
mpl.rcParams['axes.unicode_minus'] = False
df = pd.read_csv('train.csv')

 用户分析

reg_user=df1[['user_id','register_time']]
reg_user.head()

reg_user.register_time=pd.to_datetime(reg_user.register_time,format="%Y/%m/%d")
reg_user.register_time=reg_user.register_time.apply(lambda x: datetime.strftime(x,"%Y-%m-%d"))
#计算每天注册人数
reg_user = reg_user.groupby(['register_time']).user_id.count()

fig = plt.figure(figsize=(14, 10))
plt.plot(reg_user)

plt.xticks(rotation=90)
plt.title('用户注册图')
plt.show()

付费分析

#活跃用户
actuser = df1[df1['online_minutes']>=30]
#付费用户
payuser = df1[df1['payprice']>0]
#付费率
payrate = pay_user['user_id'].count() / act_user['user_id'].count()
print('付费率为%.1f' %(payrate))

 ARRPPU

#计算ARPPU
ARPPU = pay_user['payprice'].sum()/ payuser['user_id'].count()
print('ARPPU为%.1f' %(ARPPU))
#ARPPU为26.5
x=user_pay['等级']
y=user_pay['人均付费总额']
fig = plt.figure(figsize=(12,8))
plt.plot(x,y)
plt.xticks(x,range(0,len(x),1))
plt.grid(True)
plt.title('等级和人均付费总额的关系')
plt.show()

 氪金用户与一搬用户

wood_avg = [sup_user['wood_reduce_value'].mean(), nor_user['wood_reduce_value'].mean()]
stone_avg = [sup_user['stone_reduce_value'].mean(), nor_user['stone_reduce_value'].mean()]
ivory_avg = [sup_user['ivory_reduce_value'].mean(), nor_user['ivory_reduce_value'].mean()]
meat_avg = [sup_user['meat_reduce_value'].mean(), nor_user['meat_reduce_value'].mean()]
magic_avg = [sup_user['magic_reduce_value'].mean(), nor_user['magic_reduce_value'].mean()]
data = {'高氪玩家':[wood_avg[0], stone_avg[0], ivory_avg[0], meat_avg[0], magic_avg[0]], 
        '低氪玩家':[wood_avg[1], stone_avg[1], ivory_avg[1], meat_avg[1], magic_avg[1]]}
resource = pd.DataFrame(data, index=['木头', '石头', '象牙', '肉', '魔法'])

resource.plot(kind = 'bar', stacked=True, figsize=(14, 10))

plt.title('玩家资源使用量')

总结游戏数据分析的意义体现在以下几个方面:

  1. 优化产品:通过分析玩家行为数据,开发者可以了解玩家在游戏中的行为模式,识别和解决游戏中可能存在的问题,从而对游戏进行改进和优化。
  2. 提升运营效率:数据分析能够帮助游戏运营团队更有效地制定策略,例如通过对高价值用户群体的画像分析,可以更好地满足他们的需求,提高玩家的忠诚度和游戏的盈利能力。
  3. 减少成本增加收入:通过数据驱动业务,可以产生具体的落地解决方案,提高产品运营效率,提升产品的健康度,有助于企业减少不必要的成本开支,增加收入。
  4. 业务深度结合:数据分析需要与游戏的业务深度结合,针对不同类型的游戏细化出专门的分析方法,这样才能更好地发挥数据分析的价值,比如与游戏的机制、玩法、活动等深度融合。
  5. 渠道和流量分析:数据分析还可以帮助理解不同渠道的表现和效果,以及玩家的流量来源,这对于渠道运营和市场营销策略的调整至关重要。
  6. 经验模型构建:通过历史数据的积累和分析,可以构建经验模型,预测未来的发展趋势,为决策提供科学依据。
  7. 监控和报告:定期的数据分析报告可以帮助团队监控游戏的健康状况,及时发现并解决问题,确保游戏长期稳定运行。
  8. 市场趋势洞察:数据分析还可以帮助捕捉市场趋势,为新游戏的开发提供方向指导,抓住市场机会。
  9. 用户体验改善:通过对用户行为的深入分析,可以更好地理解用户需求,从而提供更加个性化的游戏体验,增强用户满意度。
  10. 风险管理:数据分析有助于识别潜在的风险点,如欺诈行为、系统漏洞等,及时采取措施防范风险。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1515118.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DETR Doesn’t Need Multi-Scale or Locality Design

论文名称:PlainDetr 发表时间:ICCV2023 开源代码 作者及组织: Yutong Lin,Yuhui Yuan等,来自西安交大,微软亚洲研究院。 前言 自Detr以来,后续paper的改进的方向:主要是将归纳偏置重新又引入进…

如何实现sam(Segment Anything Model)|fastsam模型

sam是2023年提出的一个在图像分割领域的大模型,其具备了对任意现实数据的分割能力,其论文的介绍可以参考 https://hpg123.blog.csdn.net/article/details/131137939,sam的亮点在于提出一种工作模式,同时将多形式的prompt集成到了语…

清华把大模型用于城市规划,回龙观和大红门地区成研究对象

引言:参与式城市规划的新篇章 随着城市化的不断推进,传统的城市规划方法面临着越来越多的挑战。这些方法往往需要大量的时间和人力,且严重依赖于经验丰富的城市规划师。为了应对这些挑战,参与式城市规划应运而生,它强…

短剧在线搜索源码(全网首发)

一个非常哇塞的在线短剧搜索页面,接口已经对接好了,上传源码到服务器解压就能直接用,有能力的可以自己改接口自己写自己的接口 接口文档地址:doc.djcat.sbs 源码下载地址:https://pan.xunlei.com/s/VNstN8C6N3VK1a1k…

《OWASP TOP10漏洞》

0x01 弱口令 产生原因 与个人习惯和安全意识相关,为了避免忘记密码,使用一个非常容易记住 的密码,或者是直接采用系统的默认密码等。 危害 通过弱口令,攻击者可以进入后台修改资料,进入金融系统盗取钱财&#xff0…

【算法与数据结构】队列的实现详解

文章目录 📝队列的概念及结构🌠 队列的顺序实现🌉初始化🌠入队🌉出队🌠获取队列首元素🌉获取队列尾部元素🌠获取队列中有效元素个数🌉 队列是否为空🌠查看队列…

二分查找的理解及应用场景。

一、是什么 在计算机科学中,二分查找算法,也称折半搜索算法,是一种在有序数组中查找某一特定元素的搜索算法 想要应用二分查找法,则这一堆数应有如下特性: 存储在数组中有序排序 搜索过程从数组的中间元素开始&…

【典】dp背包问题(树求方案)

回顾在acw上做过的题 有依赖的背包问题 这一题是与树相关的dp问题,根据父节点与子节点的相连关系,我们用dfs来处理根节点与子树的迭代更新,把每一颗最小单位子树看成一个物品,然后就有点像多重背包(因为有体积限制&…

云计算 3月12号 (PEX)

什么是PXE? PXE,全名Pre-boot Execution Environment,预启动执行环境; 通过网络接口启动计算机,不依赖本地存储设备(如硬盘)或本地已安装的操作系统; 由Intel和Systemsoft公司于199…

【vue在主页中点击主页面如何弹出一个指定某个页面的窗口】

【vue在主页中点击主页面跳转到某个页面的操作完整过程】 1.首先在主页面中加入一个卡槽用于展示弹出的窗口 代码如下&#xff1a; <el-dialog :visible.sync"dialogVisible1" :close-on-click-modal"false" :title"title" class"dial…

关于tcp协议

目录 前言&#xff1a; 一、TCP协议的基本概念&#xff1a; 二、TCP协议的主要特点&#xff1a; 2.1面向连接&#xff1a; 2.2可靠传输&#xff1a; 2.3基于字节流&#xff1a; 三、TCP连接的建立与终止&#xff1a; 3.1连接建立&#xff1a; 3.1.1SYN&#xff1a; 3…

资产管理系统建设方案参考

1系统概述 软件开发全套文档下载、源码下载&#xff1a;软件项目开发全套文档下载_软件开发文档下载-CSDN博客 1.1需求描述 1. 实现公司内部固定资产管理全生命周期管理&#xff0c;包括资产采购、资产入库、资产领用、资产借用、资产归还、资产报废、资产维修、资产调拨等全…

RC522刷卡电路设计及程序

一、RC522刷卡电路组成 基于RC522的刷卡电路如上图所示。该电路组成主要分为三部分&#xff1a; Receiving Circuit&#xff1a;接收电路&#xff0c;接收卡发送的数据。 Filtering Impedence-Transtorm circuit:滤波和阻抗变换电路&#xff0c;抑制高次谐波并优化到读卡器天线…

Python使用lxml解析XML格式化数据

Python使用lxml解析XML格式化数据 1. 效果图2. 源代码参考 方法一&#xff1a;无脑读取文件&#xff0c;遇到有关键词的行再去解析获取值 方法二&#xff1a;利用lxml等库&#xff0c;解析格式化数据&#xff0c;批量获取标签及其值 这篇博客介绍第2种办法&#xff0c;以菜鸟教…

【AI大模型应用开发】【LangChain系列】9. 实用技巧:大模型的流式输出在 OpenAI 和 LangChain 中的使用

大家好&#xff0c;我是同学小张&#xff0c;日常分享AI知识和实战案例欢迎 点赞 关注 &#x1f44f;&#xff0c;持续学习&#xff0c;持续干货输出。v: jasper_8017 一起交流&#x1f4ac;&#xff0c;一起进步&#x1f4aa;。微信公众号也可搜【同学小张】 &#x1f64f; 本…

Linux环境(Ubuntu)上搭建MQTT服务器(EMQX )

目录 概述 1 认识EMQX 1.1 EMQX 简介 1.2 EMQX 版本类型 2 Ubuntu搭建EMQX 平台 2.1 下载和安装 2.1.1 下载 2.1.2 安装 2.2 查看运行端口 3 运行Dashboard 管理控制台 3.1 查看Ubuntu上的防火墙 3.2 运行Dashboard 管理控制台 概述 本文主要介绍EMQX 的一些内容&a…

Vulnhub - DevGuru

希望和各位大佬一起学习&#xff0c;如果文章内容有错请多多指正&#xff0c;谢谢&#xff01; 个人博客链接&#xff1a;CH4SER的个人BLOG – Welcome To Ch4sers Blog DevGuru 靶机下载地址&#xff1a;DevGuru: 1 ~ VulnHub 目录 0x01 信息收集 0x02 Web漏洞利用 - W…

GPT-4.5 Turbo意外曝光,最快明天发布?OpenAI终于要放大招了!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

什么是信创?什么是信创测评?

信创&#xff0c;全称为信息技术应用创新&#xff0c;我的理解&#xff0c;其核心是知识产权与供应链的自主可控与可持续发展。 我国在经历了无数风雨后&#xff0c;已经浴火重生&#xff0c;国家实力日益强大&#xff0c;人民生活水平也不断提高。然而&#xff0c;我们必须清…

彩虹知识付费模板MangoA全开源包含秒杀/抽奖/社群/推送等功能

二次开发增加以下功能每日秒杀每日签到官方社群多级分销在线抽奖项目投稿 每日秒杀 每日签到 官方社群 多级分销 在线抽奖 项目投稿 下载地址&#xff1a;https://pan.xunlei.com/s/VNstMfOecGliiqew7UIorsOnA1?pwdhywi#