C# RAM Stable Diffusion 提示词反推 Onnx Demo

news2024/11/24 1:32:15

目录

介绍

效果

模型信息

项目

代码

下载


C# RAM Stable Diffusion 提示词反推 Onnx Demo

介绍

github地址:GitHub - xinyu1205/recognize-anything: Open-source and strong foundation image recognition models.

Open-source and strong foundation image recognition models.

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 384, 384]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 4585]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sbTags = new StringBuilder();
        StringBuilder sbTagsCN = new StringBuilder();
        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        List<Tag> ltTag = new List<Tag>();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        float[] mean = { 0.485f, 0.456f, 0.406f };
        float[] std = { 0.229f, 0.224f, 0.225f };

        public void Normalize(Mat src)
        {
            src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255);
            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]);
            }
            Cv2.Merge(bgr, src);
            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }
        }

        public float[] ExtractMat(Mat src)
        {
            OpenCvSharp.Size size = src.Size();
            int channels = src.Channels();
            float[] result = new float[size.Width * size.Height * channels];
            GCHandle resultHandle = default;
            try
            {
                resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
                IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
                for (int i = 0; i < channels; ++i)
                {
                    Mat cmat = new Mat(
                       src.Height, src.Width,
                       MatType.CV_32FC1,
                       resultPtr + i * size.Width * size.Height * sizeof(float));

                    Cv2.ExtractChannel(src, cmat, i);
                    cmat.Dispose();
                }
            }
            finally
            {
                resultHandle.Free();
            }
            return result;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            sbTagsCN.Clear();
            sbTags.Clear();
            Application.DoEvents();

            image = new Mat(image_path);

            //图片缩放
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384));

            Normalize(resize_image);

            var data = ExtractMat(resize_image);

            resize_image.Dispose();
            image.Dispose();

            // 输入Tensor
            input_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            var result_array = result_tensors.ToArray();

            double[] scores = new double[result_array.Length];
            for (int i = 0; i < result_array.Length; i++)
            {
                double score = 1 / (1 + Math.Exp(result_array[i] * -1));
                scores[i] = score;
            }
            List<Tag> tags = new List<Tag>(ltTag);

            List<Tag> topTags = new List<Tag>();
            for (int i = 0; i < scores.Length; i++)
            {
                if (scores[i] > tags[i].Threshold)
                {
                    tags[i].Score = scores[i];
                    topTags.Add(tags[i]);
                }
            }
            topTags.OrderByDescending(x => x.Score).ToList();

            foreach (var item in topTags)
            {
                sbTagsCN.Append(item.NameCN + ",");
                sbTags.Append(item.Name + ",");
            }
            sbTagsCN.Length--;
            sbTags.Length--;

            sb.AppendLine("Tags:" + sbTags.ToString());
            sb.AppendLine("标签:" + sbTagsCN.ToString());
            sb.AppendLine("------------------");
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/ram.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt");
            string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt");
            string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt");

            for (int i = 0; i < tagLines.Length; i++)
            {
                ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) });
            }
        }

    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sbTags = new StringBuilder();
        StringBuilder sbTagsCN = new StringBuilder();
        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        List<Tag> ltTag = new List<Tag>();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        float[] mean = { 0.485f, 0.456f, 0.406f };
        float[] std = { 0.229f, 0.224f, 0.225f };

        public void Normalize(Mat src)
        {
            src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255);
            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]);
            }
            Cv2.Merge(bgr, src);
            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }
        }

        public float[] ExtractMat(Mat src)
        {
            OpenCvSharp.Size size = src.Size();
            int channels = src.Channels();
            float[] result = new float[size.Width * size.Height * channels];
            GCHandle resultHandle = default;
            try
            {
                resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
                IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
                for (int i = 0; i < channels; ++i)
                {
                    Mat cmat = new Mat(
                       src.Height, src.Width,
                       MatType.CV_32FC1,
                       resultPtr + i * size.Width * size.Height * sizeof(float));

                    Cv2.ExtractChannel(src, cmat, i);
                    cmat.Dispose();
                }
            }
            finally
            {
                resultHandle.Free();
            }
            return result;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            sbTagsCN.Clear();
            sbTags.Clear();
            Application.DoEvents();

            image = new Mat(image_path);

            //图片缩放
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384));

            Normalize(resize_image);

            var data = ExtractMat(resize_image);

            resize_image.Dispose();
            image.Dispose();

            // 输入Tensor
            input_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            var result_array = result_tensors.ToArray();

            double[] scores = new double[result_array.Length];
            for (int i = 0; i < result_array.Length; i++)
            {
                double score = 1 / (1 + Math.Exp(result_array[i] * -1));
                scores[i] = score;
            }
            List<Tag> tags = new List<Tag>(ltTag);

            List<Tag> topTags = new List<Tag>();
            for (int i = 0; i < scores.Length; i++)
            {
                if (scores[i] > tags[i].Threshold)
                {
                    tags[i].Score = scores[i];
                    topTags.Add(tags[i]);
                }
            }
            topTags.OrderByDescending(x => x.Score).ToList();

            foreach (var item in topTags)
            {
                sbTagsCN.Append(item.NameCN + ",");
                sbTags.Append(item.Name + ",");
            }
            sbTagsCN.Length--;
            sbTags.Length--;

            sb.AppendLine("Tags:" + sbTags.ToString());
            sb.AppendLine("标签:" + sbTagsCN.ToString());
            sb.AppendLine("------------------");
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/ram.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt");
            string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt");
            string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt");

            for (int i = 0; i < tagLines.Length; i++)
            {
                ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) });
            }
        }

    }
}

下载

源码下载(带模型)

模型下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1512616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系统之ipcalc命令的基本使用

Linux系统之ipcalc命令的基本使用 一、ipcalc命令介绍二、ipcalc命令的使用帮助2.1 ipcalc命令的help帮助信息2.2 ipcalc命令的语法解释 三、ipcalc命令的基本使用3.1 计算子网掩码3.2 计算网络地址3.3 找出所对应的主机名3.4 计算子网详细信息 四、ipcalc命令使用注意事项 一、…

基于SpringBoot+MYSQL的社区团购系统

目录 1、前言介绍 2、主要技术 3、系统流程分析 3.1、注册流程 3.2、登录流程 3.3、购买流程 4、系统设计 4.1、系统结构设计 4.2、系统顺序图 4.2.1、登录模块顺序图 4.2.2、添加信息模块顺序图 4.3、数据库设计 4.3.1、数据库E-R图设计 4.3.2、数据库表设计 5、…

【论文阅读】ACM MM 2023 PatchBackdoor:不修改模型的深度神经网络后门攻击

文章目录 一.论文信息二.论文内容1.摘要2.引言3.作者贡献4.主要图表5.结论 一.论文信息 论文题目&#xff1a; PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification&#xff08;PatchBackdoor:不修改模型的深度神经网络后门攻击&#xf…

P1765 手机

题目描述&#xff1a; AC代码&#xff1a; #include<iostream> #include<cstring>using namespace std;int main() {string str;getline(cin,str);int cnt 0;for(int i0;i<str.size();i){if(str[i] a || str[i] d || str[i] g || str[i] j || str[i] m…

SA3D:基于 NeRF 的三维场景分割方法

Paper: Cen J, Zhou Z, Fang J, et al. Segment anything in 3d with nerfs[J]. Advances in Neural Information Processing Systems, 2024, 36. Introduction: https://jumpat.github.io/SA3D/ Code: https://github.com/Jumpat/SegmentAnythingin3D SA3D 是一种用于 NeRF 表…

【C#】.net core 6.0 使用第三方日志插件Log4net,日志输出到控制台或者文本文档

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…

在域控的Users目录下批量创建用户组,名称来自Excel

对于CSV文件&#xff0c;PowerShell可以直接读取并处理&#xff0c;无需额外安装模块。假设你的CSV文件中&#xff0c;用户组名称在第一列&#xff0c;文件名为"groups.csv"&#xff0c;可以使用以下PowerShell脚本来批量创建&#xff1a; # 读取CSV文件中的数据 $g…

Python 基于 OpenCV 视觉图像处理实战 之 开发环境搭建

Python 基于 OpenCV 视觉图像处理实战 之 开发环境搭建 目录 Python 基于 OpenCV 视觉图像处理实战 之 开发环境搭建 一、简单介绍 二、该项目案例的开发环境 三、Python 环境搭建 1、Python 安装包下载 2、这里以 下载 Python 3.10.9 为例 3、安装 Python 3.10.9 4、检…

大语言模型RAG-技术概览 (一)

大语言模型RAG-技术概览 (一) 一 RAG概览 检索增强生成&#xff08;Retrieval-AugmentedGeneration, RAG&#xff09;。即大模型在回答问题或生成问题时会先从大量的文档中检索相关的信息&#xff0c;然后基于这些信息进行回答。RAG很好的弥补了传统搜索方法和大模型两类技术…

java-单列集合-set系列

set集合继承collection,所以API都差不多&#xff0c;我就不多加介绍 直接见图看他们的特点 我们主要讲述的是set系列里的HashSet、LinkedHashSet、TreeSet HashSet HashSet它的底层是哈希表 哈希表由数组集合红黑树组成 特点&#xff1a;增删改查都性能良好 哈希表具体是…

使用endnote插入引用文献导致word英文和数字变成符号的解决方案

使用endnote插入引用文献导致word英文和数字变成符号的解决方案 如图使用endnote插入引用文献导致word英文和数字变成符号字体Wingdings Wingdings 是一个符号字体系列&#xff0c;它将许多字母渲染成各式各样的符号&#xff0c;用途十分广泛。 **解决方法&#xff1a;**直接通…

混合云构建-VPN打通阿里云和Azure云

要在阿里云和Azure云之间通过VPN打通网络,您需要在两边分别设置VPN网关,并配置相应的连接和路由规则以确保两个云环境之间的网络流量可以互通。以下是一个基本的步骤指南: 为了更具体地说明如何在阿里云和Azure之间通过VPN打通网络,我们将通过一个简化的示例来演示整个过程…

SublimeText4 安装

Sublime Text 可以编写html&#xff0c;css&#xff0c;js&#xff0c;php等等&#xff0c;是一个轻量、简洁、高效、跨平台的编辑器。 图1&#xff1a;SublimeText官网 Sublime Text具有漂亮的用户界面和强大的功能&#xff0c;例如代码缩略图&#xff0c;Python的插件&#…

面向IoT物联网的时间序列引擎

1、背景 随着近年来业务的发展&#xff0c;尤其是机器产生的数据占比越来越高的趋势下&#xff0c;时序数据因为其业务价值越来越被更多地关注&#xff0c;也因而催生了专用的时间序列数据库&#xff0c;简称时序数据库&#xff08;TimeSeries Database&#xff0c;TSDB&#x…

【项目】C++ 基于多设计模式下的同步异步日志系统

前言 一般而言&#xff0c;业务的服务都是周而复始的运行&#xff0c;当程序出现某些问题时&#xff0c;程序员要能够进行快速的修复&#xff0c;而修复的前提是要能够先定位问题。 因此为了能够更快的定位问题&#xff0c;我们可以在程序运行过程中记录一些日志&#xff0c;通…

垃圾清理软件大全免费 磁盘空间不足?注册表不敢乱动怎么办?ccleaner官方下载

在日常的工作中&#xff0c;面对重要文件时往往都会备份一份&#xff1b;在下载文件时&#xff0c;有时也会不小心把一份文件下载好多次。这些情况会导致电脑中出现重复的文件&#xff0c;删除这些重复文件&#xff0c;可以节省电脑空间&#xff0c;帮助提高电脑运行速度。那么…

【敬伟ps教程】视频动画

文章目录 视频文档视频时间轴帧动画视频文档 工作区需由[基本功能]切换为[动感] 可以看到我们需从时间的维度来编辑动态视觉图像 时间轴:从时间的维度来编辑动态视觉图像 PS提供的时间轴有两种:1、视频时间轴;2、动画时间轴 新建视频文档,点击新建或Ctrl+N,预设选择“胶…

Docker自建蜜罐系统【失陷检测、外网威胁感知、威胁情报】

项目地址&#xff1a; https://hfish.net Hfish是一款基于Docker的网络钓鱼平台&#xff0c;它能够帮助安全团队模拟各种网络钓鱼攻击&#xff0c;以测试和提高组织的安全防御能力。 Hfish的优点 为什么选择Hfish&#xff1f; 蜜罐通常被定义为具有轻量级检测能力、低误报率…

学生护眼台灯应该怎么选?揭秘央视推荐护眼台灯清单

大家都知道现在的学生学业压力都不比从前&#xff0c;不仅多了许多需要学习的科目&#xff0c;作业和功课也增加了许多&#xff0c;这样导致越来越多学生过早出现近视的现象。作为父母的我们能为孩子做的就是挑选一款光源舒适的台灯&#xff0c;以便孩子在夜晚学习时也能得到充…

MySQL进阶45讲【33】join语句怎么优化?

1 前言 在上一篇文章中&#xff0c;介绍了join语句的两种算法&#xff0c;分别是IndexNested-Loop Join(NLJ)和Block Nested-Loop Join(BNL)。 我们发现在使用NLJ算法的时候&#xff0c;其实效果还是不错的&#xff0c;比通过应用层拆分成多个语句然后再拼接查询结果更方便&a…