C++ std::list的merge()使用与分析

news2024/11/26 0:23:50

看到《C++标准库第2版》对list::merge()的相关介绍,令我有点迷糊,特意敲代码验了一下不同情况的调用结果。

《C++标准库第2版》对list::merge()的相关介绍

list::merge()定义

merge()的作用就是将两个list合并在一起,函数有2个版本:

  • c1.merge(c2)------------->这个版本含糊,将c2合入c1中,但合并后元素是怎么排序的呢?下文主要分析这个版本的不同调用结果
  • c1.merge(c2, op)--------->这个版本比较简单,就是将c2的内容合入到c1中,然后按op()排序

c1.merge(c2)调用情况分析

  • 前提:有两个list,内容分别如下:

  • 情况一:c1默认排序,c2不排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(); //默认升序排序
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后没有按c1的默认升序排序

  • 情况二:c1不排序,c2默认排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c2.sort(); //默认升序排序
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后没有按c2的默认升序排序

  • 情况三:c1默认排序,c2默认排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(); //默认升序排序
	c2.sort(); //默认升序排序
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后也能按默认升序排序

  • 情况四:c1默认排序,将c1赋值给c2,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(); //默认升序排序
	c2 = c1;
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:可以看到,c1赋值给c2,使得c2也具有了与c1一样的默认排序,两者合并后,仍能按默认升序排序,结果与情况三结果相似。


下面使用自定义的降序规则(op())来排序

    //降序比较
	auto op = [](int first, int second) {
		return first > second;
	};

情况五:c1自定义降序排序,c2不排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(op);
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后没有按c1的自定义降序排序,与情况一相似

情况六:c1不排序,c2自定义降序排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c2.sort(op);
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后没有按c2的自定义降序排序,与情况二相似

情况七:c1自定义降序排序,c2自定义降序排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(op);
	c2.sort(op);
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后,其结果仅仅是将c2放到了c1的末端,c1段、c2段数据仍是合并前的顺序,这与情况三有差异

 情况八:c1自定义降序排序,c2默认排序,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(op);
	c2.sort();
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

结果:合并后,没有按c1的自定义降序排序,也没有按c2的默认排序,与情况二相似

情况九:c1自定义降序排序,将c1赋值给c2,c2合入c1中

	list<int> c1{ 0,1,2,88,3,4 };
	list<int> c2{ 10,11,99,13,14,15 };
	cout << "-----------原始数据-----------" << endl;
	myPrinter(c1, c2);

	cout << "-----------排序后数据-----------" << endl;
	c1.sort(op);
	c2 = c1;
	myPrinter(c1, c2);

	cout << "-----------合并后数据-----------" << endl;
	c1.merge(c2);
	myPrinter(c1, c2);

 

结果:合并后,其结果仅仅是将c2放到了c1的末端,c1段、c2段数据仍是合并前的顺序,这与情况七相同,但与情况三有差异

结论

因为合并后的顺序情况多变,所以如果希望合并后结果按某种规则排序,建议使用c1.merge(c2, op),指明合并后的排序规则。

当然,如果c1,c2都是默认排序,则可以直接使用c1.merge(c2),即上文提到的情况三。

附:示例的辅助函数

template <class T>
void printfList(const T& _Container, const char* _Delim)
{
	std::copy(_Container.cbegin(), _Container.cend(), std::ostream_iterator<T::value_type>(cout, _Delim));
	cout << endl;
}

void myPrinter(const list<int>& c1, const list<int>& c2)
{
	cout << "c1:";
	printfList(c1, " ");
	cout << "c2:";
	printfList(c2, " ");
	cout << "----------------------" << endl << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1511862.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字图像处理-空间滤波

空间滤波 空域滤波基础 – 离散卷积的边缘效应 平滑空间滤波器 # -*- coding: utf-8 -*- # Author: Huazhong Yang # Email: cjdxyhz163.com # Time : 2024/3/7 20:26import cv2 import numpy as np# 读取图像 image cv2.imread(a1.png)# 应用高斯滤波 # 第二个参数是高斯…

微信小程序开发系列(三十)·小程序本地存储API·同步和异步的区别

目录 1. 同步API 1.1 getStorageSync存储API 1.2 removeStorageSync获取数据API 1.3 removeStorageSync删除 1.4 clearStorageSync清空 2. 异步API 2.1 setStorage存储API 2.2 getStorage获取数据API 2.3 removeStorage删除API 2.4 clearStorage清空 3. …

qt vs 编程 字符编码 程序从源码到编译到显示过程中存在的字符编码

理解字符编码&#xff0c;请参考&#xff1a;unicode ucs2 utf16 utf8 ansi GBK GB2312 CSDN博客 汉字&#xff08;或者说多字节字符&#xff09;的存放需求&#xff0c;是计算机中各种编码问题的最直接原因。如果程序不直接使用汉字&#xff0c;或间接在所有操作步骤中统一使…

Hilt

1.使用Hilt实现快速依赖注入 1.1 导入依赖 //hilt依赖//Hiltimplementation("com.google.dagger:hilt-android:2.44")annotationProcessor("com.google.dagger:hilt-android-compiler:2.44")1.2 在build.gradle(app)中加入插件 plugins {id("com.an…

大规模自动化重构框架--OpenRewrite浅析

目录 1. OpenRewrite是什么&#xff1f;定位&#xff1f; 2. OpenWrite具体如何做&#xff1f; 3. 核心概念释义 3.1 Lossless Semantic Trees (LST) 无损语义树 3.2 访问器&#xff08;Visitors&#xff09; 3.3 配方&#xff08;Recipes&#xff09; 4. 参考链接 Open…

SpringBlade error/list SQL 注入漏洞复现

0x01 产品简介 SpringBlade 是一个由商业级项目升级优化而来的 SpringCloud 分布式微服务架构、SpringBoot 单体式微服务架构并存的综合型项目。 0x02 漏洞概述 SpringBlade 框架后台 /api/blade-log/error/list路径存在SQL注入漏洞,攻击者除了可以利用 SQL 注入漏洞获取数…

Redis应用缓存

目录 前言 关于“二八定律” 使用Redis作为缓存 为什么关系型数据库性能不高 为什么并发量高了就容易宕机 Redis就是一个用来作为数据库缓存的常见方案 缓存更新策略 定期生成 搜索引擎为例 实时生成 淘汰策略 FIFO(First In First Out) 先进先出 lRU(Least …

106. Dockerfile通过多阶段构建减小Golang镜像的大小

我们如何通过引入具有多阶段构建过程的Dockerfiles来减小Golang镜像的大小&#xff1f; 让我们从一个通用的Dockerfile开始&#xff0c;它负责处理基本的事务&#xff0c;如依赖项、构建二进制文件、声明暴露的端口等&#xff0c;以便为Go中的一个非常基础的REST API提供服务。…

YoloV8实战:YoloV8-World应用实战案例

摘要 YOLO-World模型确实是一个突破性的创新&#xff0c;它结合了YOLOv8框架的实时性能与开放式词汇检测的能力&#xff0c;为众多视觉应用提供了前所未有的解决方案。以下是对YOLO-World模型的进一步解读&#xff1a; 模型架构与功能 YOLO-World模型充分利用了YOLOv8框架的…

剑指offer面试题34:在二叉树中和为某一值的路径

面试题34&#xff1a;在二叉树中和为某一值的路径 题目&#xff1a; LCR 153. 二叉树中和为目标值的路径 - 力扣&#xff08;LeetCode&#xff09; 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路…

C语言 - 各种自定义数据类型

1.结构体 把不同类型的数据组合成一个整体 所占内存长度是各成员所占内存的总和 typedef struct XXX { int a; char b; }txxx; txxx data; typedef struct XXX { int a:1; int b:1; …

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:RichText)

富文本组件&#xff0c;解析并显示HTML格式文本。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。该组件无法根据内容自适应设置宽高属性&#xff0c;需要开发者设置显示布局。 子组件 不包含子组…

封装的echarts子组件使用watch监听option失效的问题

项目场景&#xff1a; 我在项目里面封装了一个echarts组件&#xff0c;组件接收一个来自外部的option,然后我用了一个watch函数去监听这个option的变化&#xff0c;option变化之后&#xff0c;销毁&#xff0c;然后再新建一个charts表 碎碎念 问题如标题所示&#xff0c;这篇…

ubuntu 安装 infiniband 和 RoCE 驱动

下载驱动程序 驱动程序地址 https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/ 安装 安装参考文档 https://docs.nvidia.com/networking/display/mlnxofedv24010331/installing+mlnx_ofed#src-2571322208_InstallingMLNX_OFED-InstallationProced…

十五、计算机视觉-sobel算子

文章目录 前言一、sobel算子的概念二、sobel算子的计算方式三、具体实现 前言 上节课我们学习了梯度的知识&#xff0c;学习了如何去计算梯度&#xff0c;本节我们继续学习计算梯度的方法&#xff0c;本节我们学习使用Sobel算子计算梯度&#xff0c;这与上节课梯度计算方法有所…

Java客户端调用elasticsearch进行深度分页查询 (search_after)

Java客户端调用elasticsearch进行深度分页查询 &#xff08;search_after&#xff09; 一. 代码二. 测试结果 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 具体的Search_after解…

科技回顾,飞凌嵌入式受邀亮相第八届瑞芯微开发者大会「RKDC2024」

2024年3月7日~8日&#xff0c;第八届瑞芯微开发者大会&#xff08;RKDC2024&#xff09;在福州举行&#xff0c;本届大会以“AI芯片AI应用AloT”为主题&#xff0c;邀请各行业的开发者共启数智化未来。 本届大会亮点颇多&#xff0c;不仅有13大芯片应用展示、9场产品和技术论坛…

28 批量归一化【李沐动手学深度学习v2课程笔记】(备注:这一节讲的很迷惑,很乱)

目录 1.批量归一化 1.1训练神经网络时出现的挑战 1.2核心思想 1.3原理 2.批量规范化层 2.1 全连接层 2.2 卷积层 2.3 总结 3. 代码实现 4. 使用批量规范化层的LeNet 5. 简明实现 1.批量归一化 现在主流的卷积神经网络几乎都使用了批量归一化 批量归一化是一种流行且…

面向对象【static关键字】

文章目录 Java中的static关键字1. 静态变量2. 静态方法的特点3. 静态块4. 静态导入5. 单例模式中的应用 Java中的static关键字 在Java中&#xff0c;static是一个关键字&#xff0c;用于定义类级别的成员&#xff0c;这些成员与类的实例无关。static成员属于类而不是类的实例&…

怎么查看电脑是不是固态硬盘?简单几个步骤判断

随着科技的发展&#xff0c;固态硬盘&#xff08;Solid State Drive&#xff0c;简称SSD&#xff09;已成为现代电脑的标配。相较于传统的机械硬盘&#xff0c;固态硬盘在读写速度、稳定性和耐用性等方面都有显著优势。但是&#xff0c;对于不熟悉电脑硬件的用户来说&#xff0…