目录
1.批量归一化
1.1训练神经网络时出现的挑战
1.2核心思想
1.3原理
2.批量规范化层
2.1 全连接层
2.2 卷积层
2.3 总结
3. 代码实现
4. 使用批量规范化层的LeNet
5. 简明实现
1.批量归一化
现在主流的卷积神经网络几乎都使用了批量归一化
批量归一化是一种流行且有效的技术,它可以持续加速深层网络的收敛速度
1.1训练神经网络时出现的挑战
1、数据预处理的方式通常会对最终结果产生巨大影响
使用真实数据时,第一步是标准化输入特征(使其均值为0,方差为1),这种标准化可以很好地与优化器配合使用(可以将参数的量级进行统一)
2、对于典型的多层感知机或卷积神经网络,在训练时中间层中的变量可能具有更广的变化范围
不论是沿着从输入到输出的层、跨同一层中的单元、或是随着时间的推移,模型参数的随着训练更新变化莫测
归一化假设变量分布中的不规则的偏移可能会阻碍网络的收敛
3、更深层的网络很复杂,容易过拟合
这就意味着正则化变得更加重要 作者:如果我是泡橘子
当神经网络比较深的时候会发现:数据在下面,损失函数在上面,这样会出现什么问题?
正向传递的时候,数据是从下往上一步一步往上传递;反向传递的时候,数据是从上面往下传递,这时候就会出现问题:梯度在上面的时候比较大,越到下面就越容易变小(因为是n个很小的数进行相乘,越到后面结果就越小,也就是说越靠近数据的,层的梯度就越小)
上面的梯度比较大,那么每次更新的时候上面的层就会不断地更新;但是下面层因为梯度比较小,所以对权重地更新就比较少,这样的话就会导致上面的收敛比较快,而下面的收敛比较慢,这样就会导致底层靠近数据的内容(网络所尝试抽取的网络底层的特征:简单的局部边缘、纹理等信息)变化比较慢,上层靠近损失的内容(高层语义信息)收敛比较快,所以每一次底层发生变化,所有的层都得跟着变(底层的信息发生变化就导致上层的权重全部白学了),这样就会导致模型的收敛比较慢。
所以提出了假设:能不能在改变底部信息的时候,避免顶部不断的重新训练?(这也是批量归一化所考虑的问题)
1.2核心思想
为什么会变?因为方差和均值整个分布会在不同层之间变化
所以假设将分布固定,假设每一层的输出、梯度都符合某一分布,相对来说就是比较稳定的(具体分布可以做细微的调整,但是整体保持基本一致,这样的话,在学习细微的变动时也比较容易)
批量归一化:将不同层的不同位置的小批量(mini-batch)输出的均值和方差固定,均值和方差的计算方法如下图所示
在这个基础上做额外的调整,如下图所示
1.3原理
2.批量规范化层
回想一下,批量规范化和其他层之间的一个关键区别是,由于批量规范化在完整的小批量上运行,因此我们不能像以前在引入其他层时那样忽略批量大小。 我们在下面讨论这两种情况:全连接层和卷积层,他们的批量规范化实现略有不同。
2.1 全连接层
2.2 卷积层
2.3 总结
3. 代码实现
下面,我们从头开始实现一个具有张量的批量规范化层
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
# 训练模式下,用当前的均值和方差做标准化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移动平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 缩放和移位
return Y, moving_mean.data, moving_var.data
我们现在可以创建一个正确的BatchNorm
层。 这个层将保持适当的参数:拉伸gamma
和偏移beta
,这两个参数将在训练过程中更新。 此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。
撇开算法细节,注意我们实现层的基础设计模式。 通常情况下,我们用一个单独的函数定义其数学原理,比如说batch_norm
。 然后,我们将此功能集成到一个自定义层中,其代码主要处理数据移动到训练设备(如GPU)、分配和初始化任何必需的变量、跟踪移动平均线(此处为均值和方差)等问题。 为了方便起见,我们并不担心在这里自动推断输入形状,因此我们需要指定整个特征的数量。 不用担心,深度学习框架中的批量规范化API将为我们解决上述问题,我们稍后将展示这一点。
class BatchNorm(nn.Module):
# num_features:完全连接层的输出数量或卷积层的输出通道数。
# num_dims:2表示完全连接层,4表示卷积层
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 非模型参数的变量初始化为0和1
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
# 如果X不在内存上,将moving_mean和moving_var
# 复制到X所在显存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新过的moving_mean和moving_var
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
4. 使用批量规范化层的LeNet
为了更好理解如何应用BatchNorm
,下面我们将其应用于LeNet模型( 6.6节)。 回想一下,批量规范化是在卷积层或全连接层之后、相应的激活函数之前应用的。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
和以前一样,我们将在Fashion-MNIST数据集上训练网络。 这个代码与我们第一次训练LeNet( 6.6节)时几乎完全相同,主要区别在于学习率大得多。
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
让我们来看看从第一个批量规范化层中学到的拉伸参数gamma
和偏移参数beta
。
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
(tensor([0.4863, 2.8573, 2.3190, 4.3188, 3.8588, 1.7942], device='cuda:0', grad_fn=<ReshapeAliasBackward0>), tensor([-0.0124, 1.4839, -1.7753, 2.3564, -3.8801, -2.1589], device='cuda:0', grad_fn=<ReshapeAliasBackward0>))
5. 简明实现
除了使用我们刚刚定义的BatchNorm
,我们也可以直接使用深度学习框架中定义的BatchNorm
。 该代码看起来几乎与我们上面的代码相同。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))