555经典电路

news2025/1/11 5:47:17

1、555介绍:

555 定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。。它内部包括两个电压比较器,三个等值串联电阻,一个 RS 触发器,一个放电管 T 及功率输出级。它提供两个基准电压VCC /3 和 2VCC /3
1引脚:接地端,与地相接;
2引脚:触发输入端;
3引脚:电压输出端;
4引脚:RD复位端:当 端接低电平,则时基电路不工作,此时不论 、TH处于
何电平,时基电路输出为“0”,该端不用时应接高电平。
5引脚:电压控制端;若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。
6引脚:阈值输入端;
7引脚:放电端;
8引脚:电源输入端

img

2、研究内容

用集成555电路设计一脉冲波、三角波、正弦波电路:一路输出10kHZ脉冲波,另一路输出10kHZ三角波,第三路输出30kHZ正弦波,三路输出幅度为1V

3、设计方案

img

方波

用555定时器组成的多谐振荡器的典型电路如图3-3所示。R1、R2和C为定时元件,C2的作用是防止干扰电压对电路的影响。接通电源后,电容C1被充电,当电容C1上端电压Uc1升到2Ucc/3时使555第3脚Uo为低电平,同时555内放电三极管T导通,此时电容C1通过R2放电,Uc1下降。当Uc1下降到Ucc/3时,Uo翻转为高电平。当放电结束时,T截止,Ucc将通过R1、R2 向电容器C2充电,电路又翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。对555,R1的取值一般要大于1kΩ,对7555,则应在2kΩ以上,否则易损坏器件。波形主要参数估算公式:

正脉冲宽度:T1=(R1+R2)C㏑2≈0.7(R1+R2)C

负脉冲宽度:T2=R2C㏑2≈0.7R2C

重复周期:T=T1+T2≈0.7(R1+2R2)C

占空比:D= T1/T=(R1+R2)/ (R1+2R2)

img

img

仿真电路图:

img

输出波形:f=1/(99.434/1000000)=10.057Hz

Up=1V

满足设计要求

img

方波到三角波:

积分运算电路是模拟电路中应用较广泛的一种功能电路,它的原理电路如下图所示图中,输入信号ui经输入电阻R接入运放反相输入端,电容C接在负反馈回路中。与反相比例运算电路相比,只是将其中的反馈电阻用电容来代替,因而,积分电路也属于反相输入电路运用理想运放反相输人时的“虚短”和"虚断"概念可推出相关表达式,在使用电路中,为了防止低频信号增益过大,常在电容上并联一个电阻加以限制,如下图虚线所示:

img

img

仿真电路图:

img

输出波形:f=1/(99.434/1000000)=10.057Hz

Up=1V

满足设计要求

img

方波到正弦波:

img

带通滤波器输入的方波滤波得到3倍基波频率的正弦波,本实验为有源带通滤波器,对电阻R及电容C进行调节,从而实现对实验要求的3次谐波的提取。

二阶有源带通滤波器:带通滤波器是允许某一频段内的信号通过,因此它具有两个截止频率fH和fL。

通过高通滤波和低通滤波电路进行组合,可获得带通滤波电路。它的电路如图3-4所示。

img

该电路的传递函数为:img

其中: imgimg

img

对于带通滤波器,Q值越高,幅频响应曲线越尖锐,滤波器的选择性越好。但随着曲线变尖,通带范围也会相应变窄,因此Q值也不能太高,一般取Q≤10较好。另外,从通带宽度Δf的公式可看出,通过调节R4和R5的比例,即可改变带宽而不会影响中心频率。

img

仿真电路:

img

三倍基波频率正弦波输出波形:

img

总体仿真电路:

img-

输出波形:

img

输出波形:

img

4、结果分析:

在多次调整电路参数后得到了正确的输出波形图,555多谐振荡器产生方波,方波积分得到同频率正弦波,方波通过带通滤波得到三倍基波频率的正弦波;在电路调试的过程中出现了不同程度的波形失真,555多谐振荡器产生波形失真可以归结为以下几点:3端输出带负载能力有限或负载过大、4端电压不稳、5端参考电压不稳、电压质量不好、Ucc电源供电能力不足等;积分电路波形失真原因可以归结为以下几点:电阻电容参数选取不当、电压Ucc过小或是单电源供电、低频信号增益过大进入饱和区;带通滤波电路波形失真原因可以归结为以下几点:电阻电容参数选取不当、滤波器阶数太低、电压Ucc过小或是单电源供电

5、总结:

555电路不仅可以构成多谐振荡器而且还可以构成单稳态触发器、锯齿波发生器、施密特触发器,是一种应用广泛的集成电路;任何一个周期信号都可以展开成傅里叶级数,也就是若干次谐波(正弦波)之和,根据这一原理,将方波展开为傅里叶级数,用带通滤波器滤得30kHZ的正弦波信号;利用积分电路的积分功能不仅可以进行一些积分运算功能而且还可以将方波积分成三角波;在电路设计的过程中遇到过很多问题,参数也调了很久,但在这基础上最基本的是要把设计电路的特性搞清楚,在之后的参数计算过程中才不至于手忙脚乱。

6、参考文献:

[1]陆勇.模拟集成电路基础(第三版)[M].北京:中国铁道出版社,2010

[2]侯建军.数字电子技术基础(第三版)[M].北京:高等教育出版社,2015

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1508543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YoLo进化史《A COMPREHENSIVE REVIEW OF YOLO: FROM YOLOV1 TOYOLOV8 AND BEYOND》

Abstract YOLO已成为机器人、无人驾驶汽车和视频监控应用的核心实时目标检测系统。我们对YOLO的发展进行了全面的分析,研究了从最初的YOLO到YOLOv8的每次迭代中的创新和贡献。我们首先描述标准指标和后处理;然后,我们讨论了网络架构的主要变化和每个模型…

工具篇--分布式定时任务springBoot--elasticjob简单使用(1)

文章目录 前言一、elasticjob 介绍:二、elasticjob 使用:2.1 部署zookeeper:2.2 引入库2.2 定义任务:2.3 任务执行:2.4 任务执行控制台输出: 三、elasticjob 启动错误:3.1 KeeperErrorCode Ope…

数据结构->双向链表带你体验开火车(哨兵)与拼接火车(应用)厢的乐趣

✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:橘橙黄又青-CSDN博客 目的:学习双向带头链表的增,删,查,销毁…

Vue+SpringBoot打造个人健康管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 健康档案模块2.2 体检档案模块2.3 健康咨询模块 三、系统展示四、核心代码4.1 查询健康档案4.2 新增健康档案4.3 查询体检档案4.4 新增体检档案4.5 新增健康咨询 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpri…

PyTorch 源码解读之 torch.cuda.amp: 自动混合精度详解

PyTorch 源码解读之 torch.cuda.amp: 自动混合精度详解 Nvidia 在 Volta 架构中引入 Tensor Core 单元,来支持 FP32 和 FP16 混合精度计算。也在 2018 年提出一个 PyTorch 拓展 apex,来支持模型参数自动混合精度训练。自动混合精度(Automati…

2024.03.11作业

1. 提示并输入一个字符串&#xff0c;统计该字符串中大写小写字母个数&#xff0c;数字个数&#xff0c;空格个数以及其他字符个数&#xff0c;要求使用c风格字符串完成 #include <iostream> #include <string>using namespace std;int main() {cout << &qu…

蓝桥杯2023年第十四届Java省赛真题-矩形总面积

题目描述 平面上有个两个矩形 R1 和 R2&#xff0c;它们各边都与坐标轴平行。设 (x1, y1) 和(x2, y2) 依次是 R1 的左下角和右上角坐标&#xff0c;(x3, y3) 和 (x4, y4) 依次是 R2 的左下角和右上角坐标&#xff0c;请你计算 R1 和 R2 的总面积是多少&#xff1f; 注意&…

设计模式深度解析:工厂方法模式与抽象工厂模式的深度对比

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 探索设计模式的魅力&#xff1a;工厂方法模式文章浏览阅读17k次&#xff0c;点赞105次&#xff0…

根据xlsx文件第一列的网址爬虫(selenium)

seleniumXpath 在与该ipynb文件同文件下新增一个111.xlsx&#xff0c;第一列放一堆需要爬虫的同样式网页 然后使用seleniumXpath爬虫 from selenium import webdriver from selenium.webdriver.common.by import By import openpyxl import timedef crawl_data(driver, url)…

2024年零基础自学网络安全/Web安全,看这一篇就够了

作为一个安全从业人员&#xff0c;我自知web安全的概念太过于宽泛&#xff0c;我本人了解的也并不够精深&#xff0c;还需要继续学习。 但又不想新入行的人走弯路&#xff0c;所以今天随手写写关于web安全的内容&#xff0c;希望对初次遇到web安全问题的同学提供帮助&#xff…

334.递增的三元子序列

题目&#xff1a;给你一个整数数组 nums &#xff0c;判断这个数组中是否存在长度为 3 的递增子序列。 如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k &#xff0c;使得 nums[i] < nums[j] < nums[k] &#xff0c;返回 true &#xff1b;否则&#xff0c;…

Nginx+keepalived实现七层的负载均衡的高可用

目录 Nginxkeepalived实现七层的负载均衡的高可用 一、准备服务器 1、主机清单 2、配置安装nginx 所有的机器&#xff0c;关闭防火墙和selinux 3.安装nginx&#xff0c; 全部4台 二、部署负载均衡 1、修改nginx的配置文件&#xff0c;添加以下内容&#xff0c; 2、重启n…

APP自动化测试-Appium Inspector入门操作指南

上一篇博客APP自动化测试-入门示例-CSDN博客介绍了APP自动化测试的入门示例,下面详细介绍下Appium 实现的页面元素查看器工具:Appium Inspector的使用方法。 Appium Inspector简介 Appium Inspector 是 Appium 测试框架中的一个工具,用于可视化和调试移动应用程序的 UI 结…

污水处理厂重金属废水深度处理CH-90树脂处理系统

项目名称 广东某工业污水处理厂重金属废水深度处理工程项目 工艺选择 科海思重金属深度处理工艺 工艺原理 离子交换吸附 项目背景 随着环保要求不断提高&#xff0c;工业废水处理已成为众多企业的必修课。然而在工业生产中&#xff0c;如何有效处理含有重金属的废水成为…

结构化思维助力Prompt创作:专业化技术讲解和实践案例

最早接触 Prompt engineering 时, 学到的 Prompt 技巧都是: 你是一个 XX 角色… 你是一个有着 X 年经验的 XX 角色… 你会 XX, 不要 YY.. 对于你不会的东西, 不要瞎说!…对比什么技巧都不用, 直接像使用搜索引擎一样提问, 上面的技巧对于回复的效果确实有着 明显提升. 在看了 N…

【CSS面试题】外边距折叠的原因和解决

参考文章 什么时候出现外边距塌陷 外边距塌陷&#xff0c;也叫外边距折叠&#xff0c;在普通文档流中&#xff0c;在垂直方向上的2个或多个相邻的块级元素&#xff08;父子或者兄弟&#xff09;外边距合并成一个外边距的现象&#xff0c;不过只有上下外边距才会有塌陷&#x…

Xinstall CPA结算系统:精准追踪,轻松提升广告ROI

在如今的移动互联网时代&#xff0c;App推广已经成为各大企业获取用户、扩大市场份额的重要手段。然而&#xff0c;随着推广渠道的多样化&#xff0c;如何精准评估各渠道的效果、优化广告投放策略&#xff0c;以及提升用户体验&#xff0c;成为了摆在推广者面前的难题。 这时…

R语言绘制桑基图教程

原文链接&#xff1a;R语言绘制桑基图教程 写在前面 在昨天3月10日&#xff0c;我们在知乎、B站等分享了功能富集桑基气泡图的绘制教程。相关链接&#xff1a;NC|高颜值功能富集桑基气泡图&#xff0c;桑基气泡组合图。 确实&#xff0c;目前这个图在文章中出现的频率相对比较…

YOLOv8模型改进4【增加注意力机制GAM-Attention(超越CBAM,不计成本地提高精度)】

一、GAM-Attention注意力机制简介 GAM全称:Global Attention Mechanism。它被推出的时候有一个响亮的口号叫做:超越CBAM,不计成本地提高精度。由此可见,它的主要作用是为了目标检测精度的提高。 但是,大家都明白,具体效果怎么样,还得看具体的任务,我浅浅地试了一下,…

SpringBoot +WebSocket应用

我们今天不研究原理&#xff0c;只看应用。 什么是WebSocket WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket通信协议于2011年被IETF定为标准RFC 6455&#xff0c;并由RFC7936补充规范。WebSocket API也被W3C定为标准。 WebSocket使得客户端和服务器之间的数…