从零开始:神经网络(1)——神经元和梯度下降

news2025/2/27 4:54:40

 声明:本文章是根据网上资料,加上自己整理和理解而成,仅为记录自己学习的点点滴滴。可能有错误,欢迎大家指正。

一. 神经网络

1. 神经网络的发展

      先了解一下神经网络发展的历程。从单层神经网络(感知器)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。

         随着神经网络的发展,其表示性能越来越强。从单层神经网络,到两层神经网络,再到多层神经网络,下图说明了,随着网络层数的增加,以及激活函数的调整,神经网络所能拟合的决策分界平面的能力。

  可以看出,随着层数增加,其非线性分界拟合能力不断增强。图中的分界线并不代表真实训练出的效果,更多的是示意效果。神经网络的研究与应用之所以能够不断地火热发展下去,与其强大的函数拟合能力是分不开关系的

2. 什么是神经网络

         神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。芬兰计算机科学家Teuvo Kohonen对神经网络定义为:“神经网络,是一种由具有自适应性简单单元构成的广泛并行互联的网络,它的组织结构能够模拟生物神经系统对真实世界所作出的交互反应。”

         下面是一个经典的神经网络。这是一个包含三个层次的神经网络。

  • 红色的是输入层(输入节点):从外部世界提供信息。在输入节点中,不进行任何的计算——仅向隐藏节点传递信息
  • 紫色的是中间层(也叫隐藏层或隐藏节点):隐藏层和外部世界没有直接联系(由此得名)。这些节点进行计算,并将信息从输入节点传递到输出节点。
  • 绿色的是输出层(输出节点):负责计算,并从网络向外部世界传递信息。

         输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。

 注意:

  1. 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定;
  2. 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;
  3. 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

3、什么是神经元

       上面说的“简单单元”,其实就是神经网络中的最基本元素——神经元(neuron)模型。在生物神经网络中,每个神经元与其它神经元,通过突触联接。神经元之间的“信息”传递,属于化学物质传递的。当它“兴奋(fire)”时,就会向与它相连的神经元发送化学物质(神经递质, neurotransmiter),从而改变这些神经元的电位;如果某些神经元的电位超过了一个“阈值(threshold)”,那么,它就会被“激活(activation)”,也就是“兴奋”起来,接着向其它神经元发送化学物质,犹如涟漪,就这样一层接着一层传播,如图所示。

      神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出(是否被激活)可以类比为神经元的轴突计算则可以类比为细胞核。如图所示。

然而,有的小伙伴还是感觉很抽象, 下面从一个逻辑与(AND)的例子形象说起。

(1)逻辑与(AND)

        在计算机中,存储的是0和1。计算机有很多对这种01操作的运算,其中有一种运算叫做逻辑与,在编程中运算符通常表示为&。两个数x_{1}x_{2}进行逻辑与运算的规则就是只要有一个数是0,那么整个运算就是0。我们将y=x_{1}&x_{2}的四种情况可以表示为如下所示。

x_{1}x_{2}y
000
100
010
111

          然后我们要解决的问题是,怎么让神经元根据这四组数据自己学习到这种规则。我们需要做的是让一个神经元根据这四个数据学习到逻辑与的规则。也就是说,将(x_{1}x_{2})视作一个坐标,将它描点在二维平面是这样的。

       我们让神经元能够学习到将(0,1)、(0,0)、(1,0)这些点分类为0,将(1,1)这个点分类为1。更直观的讲就是神经元得是像图中的这条直线一样,将四个点划分成两类。在直线左下是分类为0,直线右上分类为1。在人工智能范畴的的神经元它本质是一条直线,这条直线将数据划分为两类。与生物意义上的神经元可谓是千差万别。你可以理解为它是受到生物意义上的神经元启发,然后将它用来形象化数学公式。既然神经元它在数学意义上就是一条直线那么,怎么表示呢?

学计算机一个很重要的思维就是:任何一个系统都是由输入、输出、和处理组成

我们在了解神经元也是一样,在本文中的需求是知道一个坐标(x_{1}x_{2}),输出这个坐标的分类y。

我们按照计算机的输入输出思维整理下思路:

输入:x_{1}x_{2}

输出:y

处理:自己学习到从x_{1}x_{2}y的一种映射方法

我们知道输入输出,并且我们知道它是直线,那么我们就可以描述这个问题了。

我们继续看上面的图,在直线的右上方是x_{1}&x_{2}=1的情况,即分类为1的情况。在直线左下是x_{1}&x_{2}=0的情况。这个时候就可以用我们高中的知识来解决这个问题了。在高中我们知道一条直线可以表示为ax_{1}+bx_{2}+c=0。由于啊,在神经元里面大家喜欢把x_{1},x_{2}前面的系数a,b叫做权重(weight),把常数项c叫做偏置(bias)。因此一般大家把x前面系数命名为w,把常数项命名为b。这些都是约定俗成,所以大家记忆下就好。在本文中,用下面这个公式w_{1}*x_{1}+w_{2}*x_{2}+b=0表示图中的那条绿色的直线。

根据高中知识,一条直线将平面划分成两半,它可以用如下方式来描述所划分的两个半平面。

  • 左下:w_{1}*x_{1}+w_{2}*x_{2}+b<0,即当x_{1}x_{2}至少有一个是0 的时候。
  • 右上:w_{1}*x_{1}+w_{2}*x_{2}+b>0,即当x_{1}x_{2}都是1 的时候。

其实w_{1}*x_{1}+w_{2}*x_{2}+b=0,就是神经元,一个公式而已。是不是觉得神经元的神秘感顿时消失?大家平常看到的那种图只不过是受生物启发而画的,用图来描述这个公式而已。我们画个图来表示神经元,这种画图方法是受到生物启发。而求解图中的参数则从来都是数学家早就知道的方法(最小二乘法)

然后,前面提到过,神经元的形象化是受到生物启发。所以我们先介绍下怎么启发的。

生物意义上的神经元,有突触(输入),有轴突(输出),有细胞核(处理)。并且神经元传输的时候信号只有两个正离子和负离子。这和计算机1和0很类似。

总结下,神经元有突触(输入),有轴突(输出),有细胞核(处理)。如下图

咱们把上面这个神经元的数学表达式写一下对比下,w_{1}*x_{1}+w_{2}*x_{2}+b=0以后啊,大家见到神经元就用这种方式理解就可以

(2)梯度下降(Gradient)

          现在问题来了,现在我们有三个参数w_{1},w_{2},b,我们怎么设置这三个参数呢?一个很直观的想法就是自己手动调。但是,通常我们要解决的问题比这个复杂的多,神经网络是由神经元连接而成。而一般神经网络都是有几百个神经元。手动调太麻烦。那怎么办?

          我们可以将神经元用公式表示为:f(x_{1}*x_{2})=w_{1}*x_{1}+w_{2}*x_{2}+b,其中未知参数是w_{1},w_{2},b。那么我们怎么衡量这些未知参数到底等于多少才是最优的呢?

          这就得想个办法去量化它对吧。在物理界有个东西叫做误差。我们神经元不就是一个函数么f(x_{1}*x_{2}),我们要做的是让这个函数尽可能的准确模拟逻辑与(&)这个功能。假设逻辑与(&)可以表示成一个函数g(x_{1}*x_{2})​。那么用物理界的术语,我可以称呼g(x_{1}*x_{2})真实值(参考量值)f(x_{1}*x_{2})测量值(也常被称作观测值/实际值)真实值和测量值之间的误差可以两者相减并平方来量化。(绝对误差 = | 测量值 -真实值 |

其实,本文中的g(x_{1}*x_{2})非常简单。就四个点而已。上一个表就可以改为:

x_{1}x_{2}g(x_{1}*x_{2})
000
100
010
111

这样我们就得到了神经元的误差函数,它的自变量是w_{1},w_{2},b。所以问题就转变为了求误差函数最小时,w_{1},w_{2},b的取值就是最优的参数。

注意了:误差函数(error) =代价函数(cost function) =目标函数(objective function) =损失函数(loss function),这三个词可以随意替换的。所以你们在其他地方看到这三个词就都替换成误差函数就可以,别被概念搞蒙了。
损失函数就是一个自变量为算法的参数,函数值为误差值的函数。梯度下降就是找让误差值最小时候这个算法对应的参数。

本文中误差函数可以这么写L(w_{1},w_{2},b)=(f(x_{1},x_{2})-g(x_{1},x_{2}))^{2}。但右边没有w_{1},w_{2},b​,我们可以将f(x_{1}*x_{2})=w_{1}*x_{1}+w_{2}*x_{2}+b​代入,展开后可以写成这个样子:

L(w_{1},w_{2},b)=(w_{1}*x_{1}+w_{2}*x_{2}+b-g(x_{1},x_{2}))^{2}

这时右边有了w_{1},w_{2},b。那怎么求L(w_{1},w_{2},b)的最小值点呢?我们如果是只看w_{1}的话,它是个过原点的二次函数。如果综合看w_{1},w_{2},它像口锅。如果看w_{1},w_{2},b的话,这个维度太高,我等人类想象不出来。

注意: 最小值点含有两个意思。一是:求自变量w_{1},w_{2},b的值,二是函数在这个自变量的值下取最小值。

再次强调:我们要求的是w_{1},w_{2},b​的值。因为神经元就是只有这三个未知量,我们不关心其他的。而且在本文中的L(w_{1},w_{2},b)的最小值很明显,它就是0。它是个完全平方嘛肯定>=0。

那怎么求这个误差函数的最小值点呢?

数学家想到了一个办法叫做梯度下降梯度下降是一个可以让计算机自动求一个函数最小值时,找到它的自变量值就可以了。注意梯度下降只关心自变量值,不关心函数值。这儿你迷糊也没关系,看到后面回头看这句话就懂了。反正梯度下降它做的事就是找自变量。

接下来咱们一起来学习下啥是梯度下降?啥是梯度?为何下降?梯度下降为了能求得最优参数

  1. 啥是梯度?梯度就是导数,大家见到“梯度”就把它替换成导数就可以。在多维情况下梯度也是导数只不过是个向量,这个向量每个元素是一个偏导数。
  2. 为何下降?因为在数学里面(因为神经网络优化本来就是数学问题),在数学里面优化一般只求最小值点。那么有些问题要求最大值点怎么办?答:“在前面加负号”。简单粗暴就解决了。好继续回答为何下降,因为是求最小值点,那么这个函数肯定就像一口锅,我们要找的就是锅底的那个点在哪,然后我们当然要下降才能找到最小值点啦
  3. 为何梯度下降能求最优参数?因为只有知道梯度下降怎么做的,才知道为何它能求最优参数。所以接下来要介绍的是,梯度下降如何实现利用负梯度进行下降的。

再次总结下,我们需要让计算机求的参数是w_{1},w_{2},b​. 我们先讲怎么怎使用梯度下降求最优的w_{1}​的吧。会求w_{1}其它的几个参数都是一样的求法。

那梯度下降怎么做到求最优的w_{1}呢?(最优指的是误差函数L(w_{1},w_{2},b)此时取最小)

采取的一个策略是猜。没错,就是猜。简单粗暴。不过它是理性的猜。说的好听点叫做理性的去估计。我们前面提到了误差函数关于w_{1}是一个二次函数,假设长下面这样。

但计算机不知道它长这样啦。它只能看到局部。首先一开始它随便猜,比如猜w_{1}=0.5吧。我们前面提到了计算机它只知道局部。为何呢?你想,我现在取值是w_{1}=0.5,我可以增大一点点或减小一点点w_{1},这样我当然只知道w_{1}=0.5​这周围的误差函数值啦。

现在按照你的直觉,猜一猜猜一猜,你觉得最优的w_{1}到底比0.5大还是比0.5小?

我想我们答案应该是一样的,肯定比0.5小。因为往右边走,即让w_{1}比0.5大的话,它的误差函数是增长的。也就是在w_{1}=0.5周围时候,w_{1}越大,误差越大。

其实梯度下降就是让计算机这么猜,因为计算机判断速度快嘛。猜个上万次就很容易猜到最优值。

回顾下我们怎么猜的?

我们是直觉上觉得,这个增大w_{1}误差函数是增加的。那这个怎么用理性思考呢?这个时候就可以用高中所学的判断函数单调性的方法了:求一阶导数啊。即:“一阶导数>0,函数单调递增,函数值随自变量的增大而增大”。

所以,我们只需要让计算机判断当前猜的这个点导数是大于0还是小于0. 该点一阶导数大于0的话,这个局部是单调递增的,增大w_{1}的值,误差函数值会增大。因此就得减小w_{1}的值;同理,如果一阶导数小于0 ,那么这个局部是单调递减的,我们增大w_{1}的值可以降低误差函数值。

总结规律:

导数>0, 减小w_{1}的值。     导数<0,增大w_{1}的值。

可以发现,w_{1}的变化与导数符号相反。因此下次要猜的w_{1}的值可以这么表示:下次要猜的w_{1}的值=本次猜的w_{1}的值-导数。有时候导数太大也可能会猜跳的太猛,我们在导数前面乘个小数防止猜的太猛。这个小数大家通常称呼它为学习率。(从这里可以看出学习率肯定小于1的)因此可以这么表示:

下次要猜的w_{1}的值=本次猜的w_{1}的值-学习率×导数。

学习率一般设置0.001,0.01,0.03等慢慢增大,如果计算机猜了很久没猜到证明得让它放开步子猜了,就增大它。

现在我们知道梯度下降干嘛了吧,它就是理性的猜最优值。那什么时候结束猜的过程呢?我们看下图,发现它最优值的那个地方导数也是0.那么我们只需要判断误差函数对w_{1}的导数是否接近0就可以。比如它绝对值小于0.01我们就认为已经到了最优点了。

误差函数是这个:L(w_{1},w_{2},b)=(w_{1}*x_{1}+w_{2}*x_{2}+b-g(x_{1},x_{2}))^{2}​. 对w_{1}求导,得到导函数L^{'}(w_{1},w_{2},b)=2*(w_{1}*x_{1}+w_{2}*x_{2}+b-g(x_{1},x_{2}))*x_{1}​.

现在总结下梯度下降(采用的是很常用的随机梯度下降)的步骤:

初始化w_{1}。(随便猜一个数),比如让w_{1}=0.5;// 注意了,同样数据反复输入进去训练的次数大家一般叫他epoch,// 大家都这么叫记住就可以,在英语里面epoch=times=次数循环多次(同样的数据重复训练)

②{遍历样本(逐个样本更新参数)

③{​ 将样本x_{1},x_{2},和标签g(w_{1},w_{2}),代入损失函数对w_{1}​的导函数,求得导数值;​

      下次要猜的w_{1}的值=本次猜的w_{1}的值-学习率*导数值;}

    }

然后我们就可以得到最优的w_{1}​了。

对于剩下的w_{2},b他们是一样的,都是利用让计算机猜。大家参考w_{1}怎么求的吧。

注意了,因为我们是二分类问题,虽然我们想让它直接输出0和1,但是很抱歉。它只能输出接近0和接近1的小数。为了方便编程,我们用-1代替0。也就是说只要神经元输出负数我们认为它就是输出0. 因为直接判断它是否接近0和是否接近1编程会更麻烦

注意了,因为我们是二分类问题,虽然我们想让它直接输出0和1,但是很抱歉。它只能输出接近0和接近1的小数。为了方便编程,我们用-1代替0。也就是说只要神经元输出负数我们认为它就是输出0. 因为直接判断它是否接近0和是否接近1编程会更麻烦

注意了,大家以后也会发现很多数据集二分类问题都会用1和-1而不用0.这是为了编程方便。我们只需要判断正负就可以知道是哪个分类。而不是需要判断是接近0还是接近1

好现在我们知道神经元的数学表达和怎么画它的形象化的图了。那么不如我们用编程也表达下它吧?

(3)实例演示

整体思路:

神经# 单层神经元 求f=x1&x2,f值的划分(即1划一组,0划一组) 
# 即求误差△=|测量值-参考值|=|w1*x1+w2*x2+b-g(x1,x2)|的值最小 
# 即求△的导数 ≈ 0,如对w1求导: 2*(w1*x1+w2*x2+b-g(x1,x2))*x1 ≈ 0

训练函数:

import numpy as np

# train :训练样本
# 输入 data  用于训练的数据样本,样本格式为[x1,x2,g(x1,x2)]
# 输入 epoch 数据训练的次数
# 输入 learn_rate # 设置学习率,防止猜的步子太大
# 输入 g_pred 预测值 g(x1,x2)
# 返回 weights 权重
# 返回 biases 偏置
def train(data, g_pred, n_epoch=1000, learn_rate=0.01):
    n_sample, n_feature = data.shape  # 获得样本的数量(行)和数据的特征(列)
    # 第一步: 初始化w和b的值,随便取w和b的值。
    weights = np.random.randn(n_feature)  # 随机设置权重,即初始化w,随便取w的值
    biases = np.random.randn()  # 初始化b,随便取b的值
    # 第二步 训练样本
    for _ in range(n_epoch):
        for i in range(n_sample):  # 逐个样本更新权重
            # 其中 i=[x1,x2,g(x1,x2)],为data数据中一行
            # 分别求w1、w2、b在(x1,x2,g(x1,x2))处的导函数值
            y_pred = np.dot(weights, data[i]) + biases  # 计算预测值,即 f=w*x+b的值
            d_weights = (y_pred - g_pred[i]) * 2 * data[i]  # 误差 =(测量值-预测值)^2,对误差取导数=2*(w*x+b-g(x1,x2))*w
            d_biases = (y_pred - g_pred) * 2
            loss = np.square(y_pred)  # 计算损失的平方
            # 设置猜数环节:下次猜的数 = 本次猜的数 - 学习率*导数值
            weights_next = weights - learn_rate * d_weights
            biases_next = biases - learn_rate
            # 更新各自参数
            weights = weights_next
            biases = biases_next
    return weights, biases

 定义神经元

# 定义 神经元
# 经过训练,我们期望它的返回值是x1&x2
# 即:返回值是 w1*x1+w2*x2 + b > 0? 1:0;
def f(data, weights, biases):
    c = 1 if np.dot(weights, data) + biases > 0 else 0
    return c

整体流程

import numpy as np
import matplotlib.pyplot as plt

data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])  # x1,x2的四个元素
g_real = np.array([-1, -1, -1, -1])  # 四个真实值
weights, biases = train(data, g_real)  # 自定义的训练函数,让神经元自己根据四条数据学习逻辑与的规则
#打印相关值,看是否正确
print(weights, biases)
print("0&0", f(data[0], weights, biases))
print("0&1", f(data[1], weights, biases))
print("1&0", f(data[2], weights, biases))
print("1&1", f(data[3], weights, biases))

# 绘制训练后的图像
x1 = data[:, 0]  # 提取第1列的值
x2 = -(weights[0] * x1 + biases) / weights[1]
plt.plot(x1, x2, 'r', label='Decision Boundary')
n_sample, n_feature = data.shape  # 获得样本的数量(行)和数据的特征(列)
for i in range(data.shape[0]):

    if f(data[i], weights, biases) == 0:
        plt.plot(data[i, 0], data[i, 1], 'bo')
    else:
        plt.plot(data[i, 0], data[i, 1], 'ro')

plt.legend()
plt.show()

运行的结果:

参考:易懂的神经网络理论到实践(1):单个神经元+随机梯度下降学习逻辑与规则 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1504700.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java网络编程】TCP核心特性(下)

1. 拥塞控制 拥塞控制&#xff1a;是基于滑动窗口机制下的一大特性&#xff0c;与流量控制类似都是用来限制发送方的传送速率的 区别就在于&#xff1a;"流量控制"是从接收方的角度出发&#xff0c;根据接收方剩余接收缓冲区大小来动态调整发送窗口的&#xff1b;而…

【编译原理】1、python 实现一个 JSON parser:lex 词法分析、parser 句法分析

文章目录 一、实现 JSON lexer&#xff08;词法解析器&#xff09;二、lex 词法分析2.1 lex string 解析2.2 lex number 解析2.3 lex bool 和 null 解析 三、syntax parser 句法分析3.1 parse array 解析数组3.2 parse object 解析对象 四、封装接口 一、实现 JSON lexer&#…

论文阅读:Diffusion Model-Based Image Editing: A Survey

Diffusion Model-Based Image Editing: A Survey 论文链接 GitHub仓库 摘要 这篇文章是一篇基于扩散模型&#xff08;Diffusion Model&#xff09;的图片编辑&#xff08;image editing&#xff09;方法综述。作者从多个方面对当前的方法进行分类和分析&#xff0c;包括学习…

时间感知自适应RAG(TA-ARE)

原文地址&#xff1a;Time-Aware Adaptive RAG (TA-ARE) 2024 年 3 月 1 日 介绍 随着大型语言模型&#xff08;LLM&#xff09;的出现&#xff0c;出现了新兴能力的概念。前提或假设是LLMs具有隐藏的和未知的能力&#xff0c;等待被发现。企业家们渴望在LLMs中发现一些无人知晓…

LLM实施的五个阶段

原文地址&#xff1a;Five Stages Of LLM Implementation 大型语言模型显着提高了对话式人工智能系统的能力&#xff0c;实现了更自然和上下文感知的交互。这导致各个行业越来越多地采用人工智能驱动的聊天机器人和虚拟助手。 2024 年 2 月 20 日 介绍 从LLMs的市场采用情况可以…

Day26:安全开发-PHP应用模版引用Smarty渲染MVC模型数据联动RCE安全

目录 新闻列表 自写模版引用 Smarty模版引用 代码RCE安全测试 思维导图 PHP知识点&#xff1a; 功能&#xff1a;新闻列表&#xff0c;会员中心&#xff0c;资源下载&#xff0c;留言版&#xff0c;后台模块&#xff0c;模版引用&#xff0c;框架开发等 技术&#xff1a;输…

超分辨率(1)--基于GAN网络实现图像超分辨率重建

目录 一.项目介绍 二.项目流程详解 2.1.数据加载与配置 2.2.构建生成网络 2.3.构建判别网络 2.4.VGG特征提取网络 2.5.损失函数 三.完整代码 四.数据集 五.测试网络 一.项目介绍 超分辨率&#xff08;Super-Resolution&#xff09;&#xff0c;简称超分&#xff08…

React组件(函数式组件,类式组件)

函数式组件 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>React Demo</title> <!-- 引…

嵌入式Linux串口和 poll() 函数的使用

一、poll() 函数的介绍 poll() 函数用于监控多个文件描述符的变化的函数。它可以用来检查一个或多个文件描述符的状态是否改变&#xff0c;比如是否可读、可写或有错误发生。它常用于处理 I/O 多路复用&#xff0c;这在需要同时处理多个网络连接或文件操作时非常有用。 头文件…

ZJUBCA研报分享 | 《BTC/USDT周内效应研究》

ZJUBCA研报分享 引言 2023 年 11 月 — 2024 年初&#xff0c;浙大链协顺利举办为期 6 周的浙大链协加密创投训练营 &#xff08;ZJUBCA Community Crypto VC Course&#xff09;。在本次训练营中&#xff0c;我们组织了投研比赛&#xff0c;鼓励学员分析感兴趣的 Web3 前沿话题…

【杂记】IDEA和Eclipse如何查看GC日志

1.Eclipse查看GC日志 1.1 右击代码编辑区 -> Run As -> Run Configurations 1.2 点击Arguments栏 -> VM arguments:区域填写XX参数 -> Run 1.3 控制台输出GC详细日志 2.IDEA查看GC日志 2.1 鼠标右击代码编辑器空白区域&#xff0c;选择Edit 项目名.main()... 2.…

IPsec VPN之安全联盟

一、何为安全联盟 IPsec在两个端点建立安全通信&#xff0c;此时这两个端点被称为IPsec对等体。安全联盟&#xff0c;即SA&#xff0c;是指通信对等体之间对某些要素的约定&#xff0c;定义了两个对等体之间要用何种安全协议、IP报文的封装方式、加密和验证算法。SA是IPsec的基…

【JavaEE初阶 -- 多线程】

认识线程&#xff08;Thread&#xff09;Thread类及常见方法 1.认识线程&#xff08;Thread&#xff09;1.1 线程1.2 进程和线程的关系和区别1.3 Java的线程和操作系统线程的关系1.4 创建线程 2. Thread类及常用的方法2.1 Thread的常见构造方法2.2 Thread的几个常见属性2.3 启动…

在 Python 中 JSON 数据格式的使用

在 Python 中 JSON 数据格式的使用 JSON 简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式。它易于阅读和编写&#xff0c;并且与许多编程语言兼容。 Python 中的 JSON 模块 Python 标准库中包含一个 json 模块&#xff0c;用于处理…

docker-compose这下会用了吗?

概要 默认的模板文件是 docker-compose.yml&#xff0c;其中定义的每个服务可以通过 image 指令指定镜像或 build 指令&#xff08;需要 Dockerfile&#xff09;来自动构建。 注意如果使用 build 指令&#xff0c;在 Dockerfile 中设置的选项(例如&#xff1a;CMD, EXPOSE, V…

Normalizer(归一化)和MinMaxScaler(最小-最大标准化)的区别详解

1.Normalizer&#xff08;归一化&#xff09;&#xff08;更加推荐使用&#xff09; 优点&#xff1a;将每个样本向量的欧几里德长度缩放为1&#xff0c;适用于计算样本之间的相似性。 缺点&#xff1a;只对每个样本的特征进行缩放&#xff0c;不保留原始数据的分布形状。 公式…

IM6ULL学习总结(四-七-1)输入系统应用编程

第7章 输入系统应用编程 7.1 什么是输入系统 ⚫ 先来了解什么是输入设备&#xff1f; 常见的输入设备有键盘、鼠标、遥控杆、书写板、触摸屏等等,用户通过这些输入设备与 Linux 系统进行数据交换。 ⚫ 什么是输入系统&#xff1f; 输入设备种类繁多&#xff0c;能否统一它们的…

java 数据结构二叉树

目录 树 树的概念 树的表示形式 二叉树 两种特殊的二叉树 二叉树的性质 二叉树的存储 二叉树的基本操作 二叉树的遍历 二叉树的基本操作 二叉树oj题 树 树是一种 非线性 的数据结构&#xff0c;它是由 n &#xff08; n>0 &#xff09;个有限结点组成一个具有层次…

ROS——Ubuntu环境搭建

Ubuntu安装 首先下载 Ubuntu 的镜像文件&#xff0c;链接如下:ubuntu-releases-20.04安装包下载_开源镜像站-阿里云ubuntu-releases-20.04安装包是阿里云官方提供的开源镜像免费下载服务&#xff0c;每天下载量过亿&#xff0c;阿里巴巴开源镜像站为包含ubuntu-releases-20.04…

css-通用样式按钮加号

1.实现 2.代码 html <div class"addF">&#xff0b;</div> css .addF{width:40px;font-size:25px;font-weight:600;background-color:rgb(64, 158, 255);text-align:center;color:white;height:34px;border-radius:3px;line-height:34px; }