一文细说Linux虚拟文件系统原理

news2024/9/29 3:30:55

在 Unix 的世界里,有句很经典的话:一切对象皆是文件。这句话的意思是说,可以将 Unix 操作系统中所有的对象都当成文件,然后使用操作文件的接口来操作它们。Linux 作为一个类 Unix 操作系统,也努力实现这个目标。

虚拟文件系统简介

为了实现 一切对象皆是文件 这个目标,Linux 内核提供了一个中间层:虚拟文件系统(Virtual File System)。

如果大家使用过面向对象编程语言(如C++/Java等)的话,应该对 接口 这个概念并不陌生。而虚拟文件系统类似于面向对象中的接口,定义了一套标准的接口。开发者只需要实现这套接口,即可以使用操作文件的接口来操作对象。如下图所示:

上图中的蓝色部分就是虚拟文件系统所在位置。

从上图可以看出,虚拟文件系统为上层应用提供了统一的接口。如果某个文件系统实现了虚拟文件系统的接口,那么上层应用就能够使用诸如 open()、read() 和 write() 等函数来操作它们。

今天,我们就来介绍虚拟文件系统的原理与实现。

 

 资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linux内核源码内存调优文件系统进程管理设备驱动/网络协议栈

虚拟文件系统原理

在阐述虚拟文件系统的原理前,我们先来介绍一个 Java 例子。通过这个 Java 例子,我们能够更容易理解虚拟文件系统的原理。

一个Java例子

如果大家使用过 Java 编写程序的话,那么就很容易理解虚拟文件系统了。我们使用 Java 的接口来模拟虚拟文件系统的定义:

public interface VFSFile {
  int open(String file, int mode);
  int read(int fd, byte[] buffer, int size);
  int write(int fd, byte[] buffer, int size);
  ...
}

上面定义了一个名为 VFSFile 的接口,接口中定义了一些方法,如 open()、read() 和 write() 等。现在我们来定义一个名为 Ext3File 的对象来实现这个接口:

public class Ext3File implements VFSFile {
  @Override
  public int open(String file, int mode) {
    ...
  }
  
  @Override
  public int read(int fd, byte[] buffer, int size) {
    ...
  }
  
  @Override
  public int write(int fd, byte[] buffer, int size) {
    ...
  }
  
  ...
}

现在我们就能使用 VFSFile 接口来操作 Ext3File 对象了,如下代码:

public class Main() {
  public static void main(String[] args) {
    VFSFile file = new Ext3File();
  
    int fd = file.open("/tmp/file.txt", 0);
    ...
  }
}

从上面的例子可以看出,底层对象只需要实现 VFSFile 接口,就可以使用 VFSFile 接口相关的方法来操作对象,用户完全不需要了解底层对象的实现过程。

虚拟文件系统原理

上面的 Java 例子已经大概说明虚拟文件系统的原理,但由于 Linux 是使用 C 语言来编写的,而 C 语言并没有接口这个概念。所以,Linux 内核使用了一些技巧来模拟接口这个概念。

下面来介绍一下 Linux 内核是如何实现的。

1. file结构

为了模拟接口,Linux 内核定义了一个名为 file 的结构体,其定义如下:

struct file {
    ...
    const struct file_operations *f_op;
    ...
};

在 file 结构中,最为重要的一个字段就是 f_op,其类型为 file_operations 结构。而 file_operations 结构是由一组函数指针组成,其定义如下:

struct file_operations {
    ...
    loff_t (*llseek) (struct file *, loff_t, int);
    ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
    ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
    ...
    int (*open) (struct inode *, struct file *);
    ...
};

从 file_operations 结构的定义可以隐约看到接口的影子,所以可以猜想出,如果实现了 file_operations 结构中的方法,应该就能接入到虚拟文件系统中。

在 Linux 内核中,file 结构代表着一个被打开的文件。所以,只需要将 file 结构的 f_op 字段设置成不同文件系统实现好的方法集,那么就能够使用不同文件系统的功能。

这个过程在 __dentry_open() 函数中实现,如下所示:

static struct file *
__dentry_open(struct dentry *dentry, 
              struct vfsmount *mnt, 
              truct file *f, 
              int (*open)(struct inode *, struct file *), 
              const struct cred *cred)
{
    ...
    inode = dentry->d_inode;
    ...
    // 设置file结构的f_op字段为底层文件系统实现的方法集
    f->f_op = fops_get(inode->i_fop);
    ...
    return f;
}

设置好 file 结构的 f_op 字段后,虚拟文件系统就能够使用通用的接口来操作此文件了。调用过程如下:

2. file_operations结构

底层文件系统需要实现虚拟文件系统的接口,才能被虚拟文件系统使用。也就是说,底层文件系统需要实现 file_operations 结构中的方法集。

一般底层文件系统会在其内部定义好 file_operations 结构,并且填充好其方法集中的函数指针。如 minix文件系统 就定义了一个名为 minix_file_operations 的 file_operations 结构。其定义如下:

// 文件:fs/minix/file.c

const struct file_operations minix_file_operations = {
    .llseek         = generic_file_llseek,
    .read           = do_sync_read,
    .aio_read       = generic_file_aio_read,
    .write          = do_sync_write,
    .aio_write      = generic_file_aio_write,
    .mmap           = generic_file_mmap,
    .fsync          = generic_file_fsync,
    .splice_read    = generic_file_splice_read,
};

也就是说,如果当前使用的是 minix 文件系统,当使用 read() 函数读取其文件的内容时,那么最终将会调用 do_sync_read() 函数来读取文件的内容。

 

3. dentry结构

到这里,虚拟文件系统的原理基本分析完毕,但还有两个非常重要的结构要介绍一下的:dentry 和 inode。

dentry 结构表示一个打开的目录项,当我们打开文件 /usr/local/lib/libc.so 文件时,内核会为文件路径中的每个目录创建一个 dentry 结构。如下图所示:

可以看到,file 结构有个指向 dentry 结构的指针,如下所示:

struct file {
    ...
    struct path f_path;
    ...
    const struct file_operations *f_op;
    ...
};

struct path {
    ...
    struct dentry *dentry;
};

与文件类似,目录也有相关的操作接口,所以在 dentry 结构中也有操作方法集,如下所示:

struct dentry {
    ...
    struct dentry *d_parent;              // 父目录指针
    struct qstr d_name;                   // 目录名字
    struct inode *d_inode;                // 指向inode结构
    ...
    const struct dentry_operations *d_op; // 操作方法集
    ...
};

其中的 d_op 字段就是目录的操作方法集。

内核在打开文件时,会为路径中的每个目录创建一个 dentry 结构,并且使用 d_parent 字段来指向其父目录项,这样就能通过 d_parent 字段来追索到根目录。

4. inode结构

在 Linux 内核中,inode 结构表示一个真实的文件。为什么有了 dentry 结构还需要 inode 结构呢?这是因为 Linux 存在硬链接的概念。

例如使用以下命令为 /usr/local/lib/libc.so 文件创建一个硬链接:

ln /usr/local/lib/libc.so /tmp/libc.so

现在 /usr/local/lib/libc.so 和 /tmp/libc.so 指向同一个文件,但它们的路径是不一样的。所以,就需要引入 inode 结构了。如下图所示:

由于 /usr/local/lib/libc.so 和 /tmp/libc.so 指向同一个文件,所以它们都使用同一个 inode 对象。

inode 结构保存了文件的所有属性值,如文件的创建时间、文件所属用户和文件的大小等。其定义如下所示:

struct inode {
    ...
    uid_t           i_uid;               // 文件所属用户
    gid_t           i_gid;               // 文件所属组
    ...
    struct timespec i_atime;             // 最后访问时间
    struct timespec i_mtime;             // 最后修改时间
    struct timespec i_ctime;             // 文件创建时间
    ...
    unsigned short  i_bytes;             // 文件大小
    ...
    const struct file_operations *i_fop; // 文件操作方法集(用于设置file结构)
    ...
};

我们注意到 inode 结构有个类型为 file_operations 结构的字段 i_fop,这个字段保存了文件的操作方法集。当用户调用 open() 系统调用打开文件时,内核将会使用 inode 结构的 i_fop 字段赋值给 file 结构的 f_op 字段。我们再来重温下赋值过程:

static struct file *
__dentry_open(struct dentry *dentry, 
              struct vfsmount *mnt, 
              truct file *f, 
              int (*open)(struct inode *, struct file *), 
              const struct cred *cred)
{
    ...
    // 文件对应的inode对象
    inode = dentry->d_inode;
    ...
    // 使用inode结构的i_fop字段赋值给file结构的f_op字段
    f->f_op = fops_get(inode->i_fop);
    ...
    return f;
}

总结

本文主要介绍了 虚拟文件系统 的基本原理,从分析中可以发现,虚拟文件系统使用了类似于面向对象编程语言中的接口概念。正是有了 虚拟文件系统,Linux 才能支持各种各样的文件系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/150330.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS 这个就叫优雅 | 多行文本溢出省略

CSS 这个就叫优雅 | 多行文本溢出省略 文章目录CSS 这个就叫优雅 | 多行文本溢出省略一、文本溢出省略方式二、WebKit内核浏览器解决方法🥙三、通用解决方法四、CSS 预处理器封装🥩五、参考资料💘六、推荐博文🍗一、文本溢出省略方…

小样本学习(Few-Shot Learning)训练参数意义

一、常规参数 1.1 epoch 是指所有的训练数据都要跑一遍。假设有6400个样本,在训练过程中,这6400个样本都跑完了才算一个epoch。一般实验需要训练很多个epoch,直到LOSS稳定后才停止。 1.2 batch_size 中文名称是批大小,之前的640…

【数据结构趣味多】二叉树概念及性质

1.树的定义 定义:树(Tree)是n(n>0)个结点的有限集。n0时称为空树。在任意一棵非空树种; 有且仅有一个根结点(root)。当n>1时,其余结点可分为m(m>0&a…

H13-531云计算HCIE V2.0——400~600常错题和知识点总结

400~600 422、在 FusionCloud 6.x 中,以下关于备份的说法哪项是错误的? A.备份协议支持本地,通过 FTP/SFTP 到第三方服务器及 OBS B. 为了保证系统稳定运行,对管理数据进行备份恢复可以确保在异常时对业务的影响降到…

没有完美的项目,也轮不到你,找到适合自己的,先干起来再说

首先明确一点,没有百分百完美的项目,即使有,也轮不到你。不要认为你必须先找到一个完美的项目,然后再去工作。这个想法最后的结局就是项目一直在找,观望,迟迟不行动,不赚钱。如果你真的想找个项…

C++ 语法基础课 习题7 —— 类、结构体、指针、引用

文章目录例题1. 21.斐波那契数列2. 16.替换空格3. 84.123...n4. 28.O(1)时间删除链表结点5. 36.合并两个排序的链表例题 1. 21.斐波那契数列 Acwing 21.斐波那契数列 class Solution { public:int Fibonacci(int n) {if(n < 1) return n;return Fibonacci(n - 1) Fibon…

并发编程 - ThreadLocal

前言 ThreadLocal 用于解决多线程对于共享变量的访问带来的安全性问题。ThreadLocal 存储线程局部变量。每个线程内置 ThreadLocalMap&#xff0c;ThreadLocalMap 的 key 存储 ThreadLocal 实例&#xff0c;value 存储自定义的值。与同步机制相比&#xff0c;它是一种“空间换…

vue性能优化之预渲染prerender-spa-plugin+vue-meta-info解决seo问题

单页面应用中&#xff0c;web项目只有一个页面&#xff0c;前端根据路由不同进行组件之间的对应切换&#xff0c;动态的渲染页面内容。这就是客户端渲染&#xff0c;具有减少服务器端压力、响应速度快等优点。但是单页应用在优化用户体验的同时&#xff0c;也给我们带来了一些对…

阅读 | 001《人工智能导论》(三)知识应用篇1

文章目录知识应用第9章、专家系统9.1 专家系统概述9.2 推理方法9.3 一个简单的专家系统9.4 非确定性推理9.5 专家系统工具9.6 专家系统的应用9.7 专家系统的局限性9.8 本章小结第10章、计算机视觉10.1 计算机视觉概述10.2 数字图像的类型及机内表示10.3 常用计算机视觉模型和关…

计算机重装系统方法教程

​计算机在使用的过程中出现各种问题也是在所难免的&#xff0c;当计算机出现了一些系统故障问题没有办法解决时&#xff0c;或是计算机使用长了以后运行就会变得越来越慢时&#xff0c;这时大家可以考虑通过电脑重装系统来解决&#xff0c;那么&#xff0c;计算机如何重装系统…

ArcGIS基础实验操作100例--实验71多图层叠加查询

本实验专栏参考自汤国安教授《地理信息系统基础实验操作100例》一书 实验平台&#xff1a;ArcGIS 10.6 实验数据&#xff1a;请访问实验1&#xff08;传送门&#xff09; 高级编辑篇--实验71 多图层叠加查询 目录 一、实验背景 二、实验数据 三、实验步骤 &#xff08;1&am…

MATLAB——PCM编译码实验

目录MATLAB——PCM编译码一、实验原理1.掌握PCM编码原理和译码原理2. 练习使用Matlab编程实现PCM编码和译码3. 了解失真度的概念&#xff0c;能对译码结果进行失真度分析二、实验原理三、实验要求1、用Matlab产生一模拟信号&#xff0c;如&#xff1a; 或者自己编写一信号&…

“微综艺+虚拟场景”,蓝海创意云利用元宇宙技术撬动流量杠杆

1月1日&#xff0c;抖音微综艺节目“友问必答”2023新年直播盛大开幕&#xff0c;蓝海创意云利用vLive虚拟直播系统为此档节目搭建了专属的“元宇宙问答直播间”&#xff0c;整场直播观看人次突破 30W 人次&#xff0c;最高同时在线人数达 3W 人次&#xff0c;独特的直播形式和…

基于Spring+Mybatis框架的人事管理系统源码+数据库,含视频部署教程

人事管理系统 下载地址&#xff1a;基于SpringMybatis框架的人事管理系统源码数据库 部署说明&#xff1a; 项目启动后&#xff0c;在浏览器中访问地址&#xff1a;http://127.0.0.1:8080/personnel/ 由于很多同学反映部署有问题&#xff0c;所以我录了一个视频来演示一下&…

【Python爬虫项目实战】Python爬虫采集某外包平台数据保存本地

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录前言一、开发工具二、环境搭建三、数据来源查询分析四、代码实现1. 发送请求2.数据获取3.解析数据4. 保存数据总结前言 今天给大家介绍的是Python爬虫某外包平台数据…

架构设计---搜索引擎的原理

前言&#xff1a; 搜索引擎的倒排索引&#xff0c;数据的搜索与查找技术是计算机软件的核心算法&#xff0c;这方面已有非常多的技术和实践经验。而对于搜索引擎来说&#xff0c;要面对海量的文档进行快速的内容检索、查询的话&#xff0c;最主要的技术是倒排索引技术。 像百…

从0.5到4.0,OceanBase单机分布式一体化的技术演进|DTCC 2022

2022 年 12 月 14 日~16 日&#xff0c;由 IT168 联合旗下 ITPUB、ChinaUnix 两大技术社区主办的第 13 届中国数据库技术大会&#xff08;DTCC 2022&#xff09;在线上隆重召开。大会以“数据智能 价值创新”为主题&#xff0c;上百位技术领袖齐聚云端&#xff0c;进行多维度、…

信道模型:卫星→地面

这里写目录标题比较C. Loo模型&#xff1a;直射阴影&#xff0c;多径不阴影Corazza模型&#xff1a;直射和多径都阴影Lutz模型&#xff1a;好坏2个状态Rayleigh and Rician 信道生成Shadowed-Rician 直射径 散射径[Secure Transmission in Cognitive Satellite Terrestrial Net…

异常流量发现与分析案例

异常现象 NetInside流量分析系统在某教育平台监测过程中&#xff0c;5月14日发现明显的4次流量高峰&#xff08;其中第1-2次产生时间距离较近&#xff09;&#xff0c;详细出现时间如下图。 由上图分析看到&#xff0c;引起流量高峰的IP地址是58.129.247.149&#xff0c;下图…

数字孪生关键技术及其在电力行业应用场景

近年来&#xff0c;我国高度重视数字经济的发展&#xff0c;产业数字化升级战略正在推进中&#xff0c;引导数字经济与实体经济深度融合&#xff0c;促进经济高质量发展。数字孪生作为一项关键技术和提高效能的重要工具&#xff0c;可以有效发挥其在建模、数据采集、分析预测、…