信道模型:卫星→地面

news2024/11/16 5:39:40

这里写目录标题

  • 比较
  • C. Loo模型:直射阴影,多径不阴影
  • Corazza模型:直射和多径都阴影
  • Lutz模型:好坏2个状态
  • Rayleigh and Rician 信道生成
  • Shadowed-Rician 直射径 散射径
    • [Secure Transmission in Cognitive Satellite Terrestrial Networks](https://ieeexplore.ieee.org/document/7583691)
    • [Resource Allocations for Secure Cognitive Satellite-Terrestrial Networks](https://ieeexplore.ieee.org/document/8048011)
  • the generalized-K model
  • Ka频段 自由空间损耗 雨衰 波束增益
  • L个散射体的阵列响应

比较

比较

  1. C.Loo模型和Corazza模型适用于描述非静止轨道卫星信道的传播特性
    Lutz模型适用于描述静止轨道卫星信道的传播特性;
  2. C.Loo模型只适用于乡村信道环境,
    而Corazza模型和Lutz模型均适用所有的卫星移动通信信道环境(公路、乡村、郊区和城市);
  3. C.Loo模型拟合参数时依据的实测数据来自于模拟卫星的直升机所发射的信号;
    而Corazza模型和Lutz模型则采用实际卫星所发射信号的实测数据,对卫星移动通信信道传输特性的反映更为真实。
C.LooCorazzaLutz
非静止轨道卫星非静止轨道卫星静止轨道卫星
乡村所有所有
模拟卫星的直升机实际卫星实际卫星

C. Loo模型:直射阴影,多径不阴影

A statistical model for a land mobile satellite link
Chun Loo, “A statistical model for a land mobile satellite link,” in IEEE Transactions on Vehicular Technology, vol. 34, no. 3, pp. 122-127, Aug. 1985, doi: 10.1109/T-VT.1985.24048.

假设接收信号中只有直射信号分量受到阴影遮蔽的作用而多径信号分量不受阴影遮蔽的作用,因此该模型又称为部分阴影信道模型。
C. Loo模型接收信号包络的概率密度函数
f r ( r ) = ∫ 0 ∞ f r ( r ∣ z ) f z ( z ) d z = r b 0 2 π d 0 ∫ 0 ∞ 1 z exp ⁡ [ − ( ln ⁡ z − μ ) 2 2 d 0 − ( r 2 + z 2 ) 2 b 0 ] dz  {f_r}\left( r \right) = \int_0^\infty {{f_r}\left( {r\left| z \right.} \right){f_z}\left( z \right)dz = \frac{r}{{{{\text{b}}_{\text{0}}}\sqrt {2\pi {d_0}} }}\int_0^\infty {\frac{1}{z}\exp \left[ { - \frac{{{{\left( {\ln z - \mu } \right)}^2}}}{{2{d_0}}} - \frac{{\left( {{r^2} + {z^2}} \right)}}{{2{b_0}}}} \right]} } {\text{dz }} fr(r)=0fr(rz)fz(z)dz=b02πd0 r0z1exp[2d0(lnzμ)22b0(r2+z2)]dz 
z表示直射波,
b0是平均散射多径功率,
μ和d0分别是lnz的均值和方差。
参数

Corazza模型:直射和多径都阴影

假设接收信号中的直射信号分量和多径信号分量同时都受到阴影遮蔽的作用,因此该模型又称为全阴影信道模型
接收信号包络的概率密度函数为
f r ( r ) = ∫ 0 ∞ f r ( r ∣ s ) f s ( s )  =  2 ( k + 1 ) r h σ s 2 π exp ⁡ ( − k ) ∫ 0 ∞ exp ⁡ [ − ( k + 1 ) r 2 s 2 − ( ln ⁡ s − μ ) 2 2 ( h σ ) 2 ] I 0 ( 2 r k ( k + 1 ) s ) d s {f_r}\left( r \right) = \int_0^\infty {{f_r}\left( {r\left| s \right.} \right){f_s}\left( s \right)} {\text{ = }}\frac{{{\text{2}}\left( {{\text{k + 1}}} \right)r}}{{h\sigma s\sqrt {2\pi } }}\exp \left( { - k} \right)\int_0^\infty {\exp \left[ { - \frac{{\left( {k + 1} \right){r^2}}}{{{s^2}}} - \frac{{{{\left( {\ln s - \mu } \right)}^2}}}{{2{{\left( {h\sigma } \right)}^2}}}} \right]} {I_0}\left( {\frac{{2r\sqrt {k\left( {k + 1} \right)} }}{s}} \right)ds fr(r)=0fr(rs)fs(s) = s2π 2(k + 1)rexp(k)0exp[s2(k+1)r22()2(lnsμ)2]I0(s2rk(k+1) )ds
S(t)表示阴影慢衰落效应,
h=(ln10)/20,
μ和σ2为lns的均值和方差,
k为Rice因子,
r为接收信号包络。
K ( α )  =  k 0  +  k 1 α  +  k 2 α 2 μ ( α )  =  μ 0  +  μ 1 α  +  μ 2 α 2  +  μ 3 α 3 σ ( α )  =  σ 0  +  σ 1 α   {\text{K}}\left( \alpha \right){\text{ = }}{{\text{k}}_{\text{0}}}{\text{ + }}{{\text{k}}_{\text{1}}}\alpha {\text{ + }}{{\text{k}}_{\text{2}}}{\alpha ^{\text{2}}} \\ \mu \left( \alpha \right){\text{ = }}{\mu _{\text{0}}}{\text{ + }}{\mu _{\text{1}}}\alpha {\text{ + }}{\mu _{\text{2}}}{\alpha ^{\text{2}}}{\text{ + }}{\mu _{\text{3}}}{\alpha ^{\text{3}}} \\ \sigma \left( \alpha \right){\text{ = }}{\sigma _{\text{0}}}{\text{ + }}{\sigma _{\text{1}}}\alpha {\text{ }} K(α) = k0 + k1α + k2α2μ(α) = μ0 + μ1α + μ2α2 + μ3α3σ(α) = σ0 + σ1α 
参数

Lutz模型:好坏2个状态

将卫星移动通信信道分为两个状态——“好状态”和“坏状态”。
当信道为“好状态”时接收信号中的直射信号分量和多径信号分量均不受阴影遮蔽的作用;
而当信道为“坏状态”时接收信号中只有受到阴影遮蔽作用的多径信号分量且不存在直射信号分量,因此该模型又称为两状态信道模型。

好状态下接收信号功率S的归一化概率密度函数为
f s _ r i c i a n ( s ) = c exp ⁡ [ − c ( s + 1 ) ] I 0 ( 2 c s ) {f_{s\_rician}}\left( s \right) = c\exp \left[ { - c\left( {s + 1} \right)} \right]{I_0}\left( {2c\sqrt s } \right) fs_rician(s)=cexp[c(s+1)]I0(2cs )
C为归一化因子,c = 1/(2σ2)

坏状态下接收信号功率S的归一化概率密度函数为
f s _ r a y l _ L N ( s )  =  ∫ 0 ∞ f s ( s ∣ s 0 ) f s 0 ( s 0 ) d s 0  =  10 σ ln10 2 π ∫ 0 ∞ 1 s 0 2 exp [  -  s s 0 − ( 10 log ⁡ 10 s 0 − μ ) 2 2 σ 2 ]   {f_{s\_rayl\_LN}}\left( {\text{s}} \right){\text{ = }}\int_{\text{0}}^\infty {{{\text{f}}_{\text{s}}}\left( {s\left| {{s_0}} \right.} \right){f_{s0}}\left( {{s_0}} \right)} {\text{d}}{{\text{s}}_{\text{0}}} \\ {\text{ = }}\frac{{{\text{10}}}}{{\sigma {\text{ln10}}\sqrt {{\text{2}}\pi } }}\int_{\text{0}}^\infty {\frac{{\text{1}}}{{{{\text{s}}_{\text{0}}}^{\text{2}}}}} {\text{exp}}\left[ {{\text{ - }}\frac{{\text{s}}}{{{{\text{s}}_{\text{0}}}}} - \frac{{{{\left( {10{{\log }_{10}}{s_0} - \mu } \right)}^2}}}{{2{\sigma ^2}}}} \right]{\text{ }} fs_rayl_LN(s) = 0fs(ss0)fs0(s0)ds0 = σln102π 100s021exp[ - s0s2σ2(10log10s0μ)2] 
S0 为短时平均接收功率

总的接收信号功率S的概率密度函数为
f s ( s )  =  ( 1 - A ) f s_rician ( s )  + A f s_rayl_LN ( s ) {f_s}\left( {\text{s}} \right){\text{ = }}\left( {{\text{1 - A}}} \right){{\text{f}}_{{\text{s\_rician}}}}\left( {\text{s}} \right){\text{ + A}}{{\text{f}}_{{\text{s\_rayl\_LN}}}}\left( {\text{s}} \right) fs(s) = (1 - A)fs_rician(s) + Afs_rayl_LN(s)
参数

Rayleigh and Rician 信道生成

2.4.2 Rayleigh and Rician fading
(2.54)
Fundamentals of Wireless Communication

Rayleigh channel (NLoS), Rician channel (LoS)
https://blog.csdn.net/weixin_41181312/article/details/123516627

bandwidth
B = 180 k H z B = 180kHz B=180kHz

Noise power spectral density
N 0 = 1 0 − 170 10 m W / H z {N_0} = {10^{\frac{{ - 170}}{{10}}}}mW/Hz N0=1010170mW/Hz
N 0 , d B m = − 170 d B m / H z {N_{0,dBm}} = - 170dBm/Hz N0,dBm=170dBm/Hz
Noise power
P N = N 0 B ( m W ) = 1 0 − 170 10 × 180000 ( m W ) {P_N} = {N_0}B\left( {mW} \right)= {10^{{{ - 170} \over {10}}}} \times 180000\left( {mW} \right) PN=N0B(mW)=1010170×180000(mW)
P N , d B m = 10 log ⁡ 10 ( P N ) = N 0 , d B m + 10 log ⁡ 10 ( B ) ( d B m ) = − 170 + 10 log ⁡ 10 ( 180000 ) ( d B m ) {P_{N,dBm}} = 10{\log _{10}}\left( {{P_N}} \right) = {N_{0,dBm}} + 10{\log _{10}}\left( B \right)\left( {dBm} \right) = - 170 + 10{\log _{10}}\left( {180000} \right)\left( {dBm} \right) PN,dBm=10log10(PN)=N0,dBm+10log10(B)(dBm)=170+10log10(180000)(dBm)

pathloss
L ( d , f ) = ( 4 π d f c ) 2 L\left( {d,f} \right) = {\left( {{{4\pi df} \over c}} \right)^2} L(d,f)=(c4πdf)2
L d B ( d , f ) = 10 log ⁡ 10 ( L ( d , f ) ) ( d B ) L_{dB}\left( {d,f} \right) = 10{\log _{10}}\left( {L\left( {d,f} \right)} \right)\left( {dB} \right) LdB(d,f)=10log10(L(d,f))(dB)

attenuation
α ( d , f ) = L ( d , f ) − 1 / P N = 10 − L d B ( d , f ) 10 / 10 P N , d B m 10 = 10 − P N , d B m − L d B ( d , f ) 10 \alpha \left( {d,f} \right) = \sqrt {L{{\left( {d,f} \right)}^{ - 1}}/P_N} = \sqrt {{{10}^{{{ - L_{dB}\left( {d,f} \right)} \over {10}}}}/{{10}^{{{P_{N,dBm}} \over {10}}}}} = \sqrt {{{10}^{{{ - P_{N,dBm}- L_{dB}\left( {d,f} \right)} \over {10}}}}} α(d,f)=L(d,f)1/PN =1010LdB(d,f)/1010PN,dBm =1010PN,dBmLdB(d,f)

1 M-antenna transmitter → 1 single-antenna receiver
NLOS
h N L O S = 1 / 2 ( c + j e ) ∈ C M × 1 {{\bf{h}}_{NLOS}} = \sqrt {1/2} \left( {{\bf{c}} + j{\bf{e}}} \right) \in {{\Bbb C}^{M \times 1}} hNLOS=1/2 (c+je)CM×1
Rayleigh
h R a y l e i g h ( d , f ) = α ( d , f ) h N L O S ∈ C M × 1 {{\bf{h}}_{Rayleigh}}\left( {d,f} \right) = \alpha \left( {d,f} \right){{\bf{h}}_{NLOS}} \in {{\Bbb C}^{M \times 1}} hRayleigh(d,f)=α(d,f)hNLOSCM×1
Rician
h R i c i a n ( d , f ) = α ( d , f ) ( ε 1 + ε a ( θ ) + 1 1 + ε h N L O S ) ∈ C M × 1 {{\bf{h}}_{Rician}}\left( {d,f} \right) = \alpha \left( {d,f} \right)\left( {\sqrt {\frac{\varepsilon }{{1 + \varepsilon }}} {\bf{a}}\left( \theta \right) + \sqrt {\frac{1}{{1 + \varepsilon }}} {{\bf{h}}_{NLOS}}} \right) \in {{\Bbb C}^{M \times 1}} hRician(d,f)=α(d,f)(1+εε a(θ)+1+ε1 hNLOS)CM×1

Shadowed-Rician 直射径 散射径

优点
计算量小

Although some mathematical models, such as those of Loo, Barts–Stutzman, and Karasawa et al.,have been developed to describe the satellite channel, the shadowed-Rician model proposed in [19] is a popular model, which provides a significantly less computational burden than other channel models.

Secure Transmission in Cognitive Satellite Terrestrial Networks

K. An, M. Lin, J. Ouyang and W. -P. Zhu, “Secure Transmission in Cognitive Satellite Terrestrial Networks,” in IEEE Journal on Selected Areas in Communications, vol. 34, no. 11, pp. 3025-3037, Nov. 2016, doi: 10.1109/JSAC.2016.2615261.

Given a receiver’s position within the satellite spot beam coverage area, the beam gain factor can be approximated as [1], [2]
b ( φ ) = ( J 1 ( u ) 2 u + 36 J 3 ( u ) u 3 ) 2 b\left ({ \varphi }\right ) = \left ({ {\frac {J_{1}\left ({ u }\right )}{2u} + 36\frac {J_{3}\left ({ u}\right )}{{u_{}^{3}}}} }\right )_{}^{2} b(φ)=(2uJ1(u)+36u3J3(u))2
u = 2.07123 sin ⁡ φ sin ⁡ φ 3 d B u = 2.07123\frac {\sin \varphi }{\sin \varphi _{\mathrm{3dB}}} u=2.07123sinφ3dBsinφ
φ \varphi φ is the angle between the location of the corresponding receiver and the beam center with respect to the satellite, and φ 3 d B \varphi _{\mathrm{3dB}} φ3dB is the 3-dB angle.

The satellite channels are usually modeled by composite fading distributions to accurately describe the statistical properties of the signal envelope.
Although existing statistical models, such as Loo, Barts-Stutzman, and Karasawa, have been presented to describe the satellite channel, the Shadowed-Rician (SR) model proposed in [33] has been widely used in related work.
In this model, the channel fading coefficient g ˉ \bar g gˉ is described as
g ˉ = A exp ⁡ ( j ψ ) + Z exp ⁡ ( j ζ ) \bar g = A\exp \left ({ {j\psi } }\right ) + Z\exp \left ({ {j\zeta } }\right ) gˉ=Aexp(jψ)+Zexp(jζ)
ψ ψ ψ is a stationary random phase vector with elements uniformly distributed over [ 0 , 2 π ) [0,2π) [0,2π) ,
ζ ζ ζ the deterministic phase vector of the LOS component.
A A A and Z Z Z are the amplitudes of the scattering and the LOS components, which are independent stationary random processes following Rayleigh and Nakagami- m m m distributions respectively.

The SR fading distribution can be characterized as g ˉ ∼ S R ( Ω , b , m ) { \bar g} \sim \mathrm {SR}\left ({ {\Omega ,b,m} }\right ) gˉSR(Ω,b,m) with
Ω \Omega Ω being the average power of the LoS component,
2 b 2b 2b the average power of the multipath component, and
m m m the Nakagami- m m m parameter corresponding to the fading severity.
通过分布函数确定??

Combining (33) and (35), the overall channel for satellite link can be modeled as
g = b ( φ ) g ˉ g = \sqrt {b\left ({ {\varphi} }\right )} \bar g g=b(φ) gˉ

b=0.126
m=10
Omega=0.835
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π

Resource Allocations for Secure Cognitive Satellite-Terrestrial Networks

The SAT is equipped with N t N_t Nt -antennas
h = b ( φ ) h ~ \mathbf {h}=\sqrt {b(\varphi )}\tilde {\mathbf {h}} h=b(φ) h~
b ( φ ) = ( J 1 ( u ) 2 u + 36 J 3 ( u ) u 3 ) 2 b(\varphi )=\left ({\frac {J_{1}(u)}{2u}+36\frac {J_{3}(u)}{u^{3}} }\right )^{2} b(φ)=(2uJ1(u)+36u3J3(u))2
u = 2.07123 sin ⁡ φ sin ⁡ φ 3 d B u=2.07123\frac {\sin \varphi }{\sin \varphi _{3\mathrm {dB}}} u=2.07123sinφ3dBsinφ
h ~ = A exp ⁡ ( j ψ )  ⁣ +  ⁣ Z exp ⁡ ( j ϕ ) \tilde {\mathbf {h}}=A\exp (j\boldsymbol {\psi })\!+\!Z\exp (j\boldsymbol {\phi }) h~=Aexp(jψ)+Zexp(jϕ)
where b ( φ ) b(\varphi ) b(φ) is the corresponding beam gain factor, which is determined by their location.
φ \varphi φ is the angle between the corresponding receiver and the beam center, 怎么确定??
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π is the 3-dB angle.
J 1 ( ⋅ ) J_{1}(\cdot ) J1() and J 3 ( ⋅ ) J_{3}(\cdot ) J3() represent the first-kind Bessel function of order 1 and 3.
h ~ ∈ C N t × 1 \tilde {\mathbf {h}}\in \mathbb {C}^{N_{t}\times 1} h~CNt×1 denotes the channel fading vector from SAT to the receiver, which include the scattering and the line-of-sight (LOS) components.
ψ ∈ [ 0 , 2 π ) \boldsymbol {\psi }\in [0,2\pi ) ψ[0,2π) denotes the stationary random phase 随机
ϕ \boldsymbol {\phi } ϕ denotes the deterministic phase of the LOS component. 怎么确定??
A A A and Z Z Z are the amplitudes of the scattering and the LOS components. 怎么确定??
The beam angles from SAT to PU, to Eve and to SU are set as 0.01°, 0.4° and 0.8°, respectively

the generalized-K model

K. P. Peppas, " Accurate closed-form approximations to generalised- $K$ sum distributions and applications in the performance analysis of equal-gain combining receivers ", IET Commun., vol. 5, no. 7, pp. 982-989, May 2011.
I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, and H. Yanikomeroglu, “A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels,” IEEE Trans. Commun., vol. 59, no. 10, pp. 2654–2658, Oct. 2011.

Energy Efficient Adaptive Transmissions in Integrated Satellite-Terrestrial Networks With SER Constraints

Y. Ruan, Y. Li, C. -X. Wang, R. Zhang and H. Zhang, “Power Allocation in Cognitive Satellite-Vehicular Networks From Energy-Spectral Efficiency Tradeoff Perspective,” in IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 2, pp. 318-329, June 2019, doi: 10.1109/TCCN.2019.2905199.

Ka频段 自由空间损耗 雨衰 波束增益

Physical Layer Security in Multibeam Satellite Systems
Ka频段

Z. Lin, M. Lin, J. -B. Wang, T. de Cola and J. Wang, “Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access,” in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 3, pp. 657-670, June 2019, doi: 10.1109/JSTSP.2019.2899731. 不太一样自由空间损耗 雨衰 波束增益 阵列控制向量
mmWave

M. Lin, C. Yin, Z. Lin, J. -B. Wang, T. de Cola and J. Ouyang, “Combined Beamforming with NOMA for Cognitive Satellite Terrestrial Networks,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6, doi: 10.1109/ICC.2019.8761139.
Ka频段

Joint Beamforming for Secure Communication in Cognitive Satellite Terrestrial Networks
mmWave

the free space loss (FSL)
C L = ( λ 4 π d ) 2 {C_{L}} = {\left ({{\frac {\lambda }{{4\pi d }}} }\right)^{2}} CL=(4πdλ)2

the rain attenuation fading vector r ∈ C N s × 1 {\mathbf{r}} \in {C^{N_{s} \times 1}} rCNs×1 between the satellite antenna array and the ground user
r = ξ − 1 2 e − j p {\mathbf{r}} = {\xi ^{ - \frac {1}{2}}}{e^{ - j{\mathbf{p}}}} r=ξ21ejp
p {\mathbf{p}} p is the N s × 1 {N_{s}} \times 1 Ns×1 sized phase vector with its components uniformly distributed over [ 0 , 2 π ) [0,2π) [0,2π) 随机
According to ITU-R Recommendation P.1853 [39], the power gain due to rain attenuation in dB, ξ d B = 20 log ⁡ 10 ( ξ ) {\xi _{{\mathrm{dB}}}} = 20{\log _{10}}\left ({\xi }\right) ξdB=20log10(ξ) , commonly follows a lognormal distribution, namely, l n ( ξ d B ) ∼ C N ( μ , σ 2 ) {\mathrm{ln}}\left ({{{\xi _{{\mathrm{dB}}}}} }\right) \sim {\mathcal{ C}}{\mathcal{ N}}\left ({{\mu,{\sigma ^{2}}} }\right) ln(ξdB)CN(μ,σ2) , 随机
where μ \mu μ and σ \sigma σ , both expressed in dB, are the lognormal location and scale parameter, respectively.
μ = − 3.125 \mu=-3.125 μ=3.125
σ = 1.591 \sigma=1.591 σ=1.591

the antenna gain from the m m m -th on-board beam to the user
b m = b max ⁡ ( J 1 ( u m ) 2 u m + 36 J 3 ( u m ) u m 3 ) 2 {b_{m}} = {b_{\max }}{\left ({{\frac {{J_{1}\left ({{u_{m}} }\right)}}{{2{u_{m}}}} + 36\frac {{J_{3}\left ({{u_{m}} }\right)}}{u_{m}^{3}}} }\right)^{2}} bm=bmax(2umJ1(um)+36um3J3(um))2
b max ⁡ {b_{\max }} bmax is the maximal satellite antenna gain of the m m m -th beam,
u m = 2.07123 sin ⁡ ϕ m / 2.07123 sin ⁡ ϕ m sin ⁡ ( ϕ 3 d B ) m sin ⁡ ( ϕ 3 d B ) m {u_{m}} = {{2.07123\sin {\phi _{m}}} \mathord {\left /{ {\vphantom {{2.07123\sin {\phi _{m}}} {\sin {{\left ({{{\phi _{{\mathrm{3dB}}}}} }\right)}_{m}}}}} }\right. } {\sin {{\left ({{{\phi _{{\mathrm{3dB}}}}} }\right)}_{m}}}} um=2.07123sinϕm/2.07123sinϕmsin(ϕ3dB)msin(ϕ3dB)m , 怎么确定??
J 1 ( ⋅ ) {J_{1}}\left ({\cdot }\right) J1() and J 3 ( ⋅ ) {J_{3}}\left ({\cdot }\right) J3() the first-kind Bessel functions of order 1 and 3, respectively.

the overall satellite channel
f = C L r ⊙ b 1 2 {\mathbf{f}} = \sqrt {C_{L}} {\mathbf{r}} \odot {{\mathbf{b}}^{\frac {1}{2}}} f=CL rb21
b = [ b 1 , ⋯   , b N s ] T ∈ C N s × 1 {\mathbf{b}} = {\left [{ {b_{1}, \cdots,{b_{N_{s}}}} }\right]^{T}} \in {C^{N_{s} \times 1}} b=[b1,,bNs]TCNs×1 is the beam gain vector

f=20GHz
b max ⁡ = 52 d B {b_{\max }}=52dB bmax=52dB
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π
噪声带宽=50MHz

L个散射体的阵列响应

Adaptive scheduling for millimeter wave multi-beam satellite communication systems

Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming
J. Du, C. Jiang, H. Zhang, X. Wang, Y. Ren and M. Debbah, “Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming,” in IEEE Journal on Selected Areas in Communications, vol. 36, no. 7, pp. 1367-1382, July 2018, doi: 10.1109/JSAC.2018.2824623.
mmWave

the channel vector h n ∈ C N s × 1 {{\mathbf {h}}_{n}}\in {{\mathbb {C}}^{{N_{s}}\times 1}} hnCNs×1 of FSS terminal n n n ( n ∈ N ≜ { 1 , 2 , ⋯   , N } n \in \mathsf {\mathcal {N}} \triangleq \left \{{ 1,2, \cdots,N }\right \} nN{1,2,,N} )
h n = N s L ∑ l = 1 L δ n , l α ( θ n , l ) , ∀ n ∈ N {{\mathbf {h}}_{n}}=\sqrt {\frac {{N_{s}}}{L}}\sum \nolimits _{l=1}^{L}{{\delta _{n,l}}\boldsymbol {\alpha }\left ({{\theta _{n,l}} }\right)},\quad \forall n\in \mathsf {\mathcal {N}} hn=LNs l=1Lδn,lα(θn,l),nN
where L L L is the number of scatters,
δ n , l {\delta _{n,l}} δn,l and θ n , l {\theta _{n,l}} θn,l are the complex gain and normalized direction of the LOS path for FSS n n n , respectively.
In addition, δ n , l 2 ∼ C N ( 0 , σ 0 2 ) {\delta _{n,l}^{2}}\sim \mathsf {\mathcal {C}\mathcal {N}}\left ({0,\sigma _{0}^{2} }\right) δn,l2CN(0,σ02) is independent identically distributed (i.i.d.) complex Gaussian distribution with zero-mean, and covariance σ 0 2 = 1 \sigma _{0}^{2}=1 σ02=1 , which indicates Rician factor, and 随机
θ n , l ∼ U [ − 1 , 1 ] {\theta _{n,l}}\sim U\left [{ -1,1 }\right] θn,lU[1,1] is i.i.d. uniformly distributed. 随机
L=2 [36]

Moreover, when a uniform linear array (ULA) is adopted, the normalized array response α ( θ ) α(θ) α(θ) is given by
α ( θ ) = 1 N s [ 1 , e − j 2 π λ d sin ⁡ ( φ ) , ⋯   , e − j 2 π λ ( N s − 1 ) d sin ⁡ ( φ ) ] T \boldsymbol {\alpha }\left ({\theta }\right) = \frac {1}{\sqrt {{N_{s}}}}{{\left [{ 1,{e^{-j\frac {2\pi }{\lambda }d\sin \left ({\varphi }\right)}}, \cdots,{e^{-j\frac {2\pi }{\lambda }\left ({{N_{s}} - 1 }\right)d\sin \left ({\varphi }\right)}} }\right]}^{T}} α(θ)=Ns 1[1,ejλ2πdsin(φ),,ejλ2π(Ns1)dsin(φ)]T
normalized direction θ n θn θn is related to the physical azimuth angle of departure (AoD) of φ ∈ [ − π / 2 , π / 2 ] φ∈[−π/2,π/2] φ[π/2,π/2] as θ = ( 2 d / λ ) s i n ( φ ) θ=(2d/λ)sin(φ) θ=(2d/λ)sin(φ) , 怎么确定??
where d d d is the antenna spacing (i.e., the distance between the two adjacent antennas), and
λ λ λ is the carrier wavelength.
In this work, we assume the critically sampled environment, i.e, d / λ = 0.5 d/λ=0.5 d/λ=0.5 , considering that the normalized AoD is the sine function of the actual AoD.



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/150310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

异常流量发现与分析案例

异常现象 NetInside流量分析系统在某教育平台监测过程中,5月14日发现明显的4次流量高峰(其中第1-2次产生时间距离较近),详细出现时间如下图。 由上图分析看到,引起流量高峰的IP地址是58.129.247.149,下图…

数字孪生关键技术及其在电力行业应用场景

近年来,我国高度重视数字经济的发展,产业数字化升级战略正在推进中,引导数字经济与实体经济深度融合,促进经济高质量发展。数字孪生作为一项关键技术和提高效能的重要工具,可以有效发挥其在建模、数据采集、分析预测、…

前端组件库自定义主题切换探索-01-方案借鉴与思路参考

探索原因背景 首先自然是项目有需求,这是必须去做的原因 其次,是我们项目没有直接使用市面上现成的基于element-ui或者ant-design的第三方UI框架,比如avue,而是有着自己的UI组件库 第三,我们的组件库基于ant-design-v…

C++ stack和queque

Stack 一.有关stack介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其只能从容器的一端进行元素的插入、提取或者删除操作。stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并…

u盘格式化后数据能恢复吗?当然可以,5步恢复U盘数据

很多人都知道格式化U盘会清空里面的数据,虽然可以进行备份,但是一般我们都不会轻易格式化自己的U盘。但是遇到一些特殊情况,我们必须格式化U盘。u盘格式化后数据能恢复吗?当然可以。 只要你的原始数据没有被覆盖,没有…

新C++(4):模板

"抱紧你的我,比国王富有" C可复用性高,C引入了模板的概念,后面在此基础上,实现了方便开发的标准模板库STL -----前言 一、初始模板 我们先来看看 下面的代码段; 如果此时又有需求: 交换一个char 类型的变量 &#x…

数据库,计算机网络、操作系统刷题笔记29

数据库,计算机网络、操作系统刷题笔记29 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle…

联合证券|主力加仓电气设备、有色金属等行业

上证指数、深证成指早盘探底上升,午后震动回落,尾盘有所上升;创业板指早盘探底冲高,午后震动回落;科创50指数早盘高开高走,午后震动回落。到收盘,上证指数报3157.64点,涨0.08%&#…

如何在Windows中轻松扩大C盘?

因为C盘是系统盘,所以没有足够的空间会导致电脑变慢,影响程序或游戏的运行。新电脑C盘可能有足够的可用空间,但随着对电脑的使用,应用程序安装的越来越多。即便很多程序安装到D盘,但某些程序仍然会占用C盘的部分空间。…

Linux信号通信之信号

文章目录什么是信号生活中的信号进程的信号Linux信号种类前台进程和后台进程进程对信号的处理策略Linux产生信号的方式系统调用发送信号kill调用raise调用abortalarm通过终端按键产生信号通过软件条件产生信号信号的自定义处理signalsigactionCoredump函数重入可重入函数和不可…

Spire.Office 8.1.1 for .NET 是 Spire.Office 7.12.5吗

为何 Spire.Office for .net 8.1.1 悄悄而来?不得而知。官网没有更新信息,为何?我们都不清楚,但是都需要迎接它的到来,不管何种原因,接受吧 by Ω578867473 Spire.Office 7.12.5 is released Friday, 30 De…

持续交付-Jenkinsfile 语法

实现 Pipeline 功能的脚本语言叫做 Jenkinsfile,由 Groovy 语言实现。Jenkinsfile 一般是放在项目根目录,随项目一起受源代码管理软件控制,无需像创建"自由风格"项目一样,每次可能需要拷贝很多设置到新项目,…

openEuler委员会主席江大勇:激发原创力量,逐梦数智未来

12月29日,由欧拉开源社区发起并联合华为、麒麟软件、统信软件、麒麟信安、超聚变、英特尔、中科院软件所、软通动力、润和软件等伙伴,共同举办的openEuler Summit 2022于线上举行。 会上,openEuler委员会主席江大勇发表了《激发原创力量&…

PyQt学习笔记-基本窗体

记述PyQt的基本窗体信息和基本操作。一、主窗体类(QMainWindow)主窗体类是通用的主窗体,包含菜单栏(QMenuBar),工具栏(QToolBars),悬停部件(QDockWidgets&…

国产之光Yakit——POC模拟神器

概要介绍Yakit 是一个高度集成化的 Yak 语言安全能力的安全测试平台,使用 Yakit,可以做到:类 Burpsuite 的 MITM 劫持操作台查看所有劫持到的请求的历史记录以及分析请求的参数全球第一个可视化的 Web 模糊测试工具:Web FuzzerYak…

前端项目-小米商城

首页的展示 首页的功能 1、搜索栏模糊查询 在我在输入框输入关键字的时候,会匹配关键字,如果我的存放的数据里面包含这些关机键字就会显示出来。做到模糊查询的效果。 2、实现搜索功能 在首页的搜索框点击搜索的时候,就会对你输入的关键字进…

VCSA证书过期处理

原创作者:运维工程师 谢晋 前提提要 客户环境为VSAN环境,VCSA版本为6.7,登陆VCSA时发现报错如下图:     经验判断该报错是因为VCSA的证书过期了,登陆VCSA的5480界面https://VCSAIP:5480,发现果然是证…

Java设计模式-建造者模式Builder

介绍 建造者模式(Builder Pattern) 又叫生成器模式,是一种对象构建模式。它可以 将复杂对象的建造过程抽象出来(抽象类别),使这个抽象过程的不同实现方 法可以构造出不同表现(属性)的…

模拟实现list和vector反向迭代器

学习这部分知识,需要你了解vector和list的正向迭代器知识以及容器适配器知识,可以阅读我写的另外三篇vector、list、容器适配器 知识的博客!其中list知识内容尤其重要且难度要求很高! 反向迭代器,顾名思义是与正向迭代…

Mybatis整合Spring的事务控制与SqlSession线程安全问题

在Spring与Mybatis框架整合中,主要有两个重要改动,分别是事务与SqlSession。mybatis-spring包中为以上两个问题提供了解决方案。 重要组件 SpringManagedTransaction (Spring事务管理器)SqlSessionTemplate (SqlSess…