Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容

news2024/11/17 0:44:10

文章目录

    • 1、软件要求
    • 2、安装CUDA
      • 2.1、安装gcc
      • 2.2、安装CUDA
    • 3、安装Anaconda3
      • 3.1、下载Anaconda3
      • 3.2、创建python虚拟环境
    • 4、部署系统
      • 4.1、下载源码
      • 4.2、安装依赖
      • 4.3、下载模型
      • 4.4、初始化配置和知识库
        • 4.4.1、初始化配置
        • 4.4.2、初始化知识库
      • 4.5、运行
      • 4.6、运行
        • 4.6.1、启动
        • 4.6.2、启动创建知识库和上传pdf
        • 4.6.3、问答提取内容

1、软件要求

Linux Ubuntu 22.04.5 kernel version 6.7
最低要求
该要求仅针对标准模式,轻量模式使用在线模型,不需要安装torch等库,也不需要显卡即可运行。

  • Python 版本: >= 3.8(很不稳定), < 3.12
  • CUDA 版本: >= 12.1
    推荐要求
    开发者在以下环境下进行代码调试,在该环境下能够避免最多环境问题。
  • Python 版本 == 3.11.7
  • CUDA 版本: == 12.1

本文是基于Ubuntu 22.04.1 LTS (GNU/Linux 5.15.133.1-microsoft-standard-WSL2 x86_64)测试

2、安装CUDA

2.1、安装gcc

输入gcc -version检查是否安装了gcc

~$ gcc --version
Command 'gcc' not found, but can be installed with:
sudo apt install gcc

2.2、安装CUDA

输入nvidia-smi查看支持CUDA的版本,支持的最高版本是12.3
在这里插入图片描述

当前pytorch最高支持12.1,在官网https://developer.nvidia.com/cuda-toolkit-archive下载12.1.1版本
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输入命令下载安装

wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run

配置环境变量,输入vi ~/.bashrc命令打开文件

export PATH=/usr/local/cuda-12.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:$LD_LIBRARY_PATH

刷新环境变量source ~/.bashrc

3、安装Anaconda3

3.1、下载Anaconda3

官网下载:https://www.anaconda.com/download/
清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
当前最新版本:https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
下载完成,输入下边命令安装

sh Anaconda3-2023.09-0-Linux-x86_64.sh

3.2、创建python虚拟环境

conda create -n python311 python=3.11

# 激活环境
conda activate python311
# 如果activate不存在,改用source激活环境
# source activate python311
# 退出环境
conda deactivate python311 

4、部署系统

4.1、下载源码

浏览器下载:Langchain-Chatchat-0.2.10.zip:https://github.com/chatchat-space/Langchain-Chatchat/releases
也可以通过git拉取最新仓库

# git拉取最新仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git 

4.2、安装依赖

# 进入目录
$ cd Langchain-Chatchat

# 安装全部依赖
# 使用国内源下载依赖更快:https://mirrors.aliyun.com/pypi/simple/,https://pypi.tuna.tsinghua.edu.cn/simple/
# 全部依赖
$ pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# api运行依赖
$ pip install -r requirements_api.txt -i https://mirrors.aliyun.com/pypi/simple/
# webui运行依赖
$ pip install -r requirements_webui.txt -i https://mirrors.aliyun.com/pypi/simple/
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。

4.3、下载模型

$ git lfs install
# 下载LLM模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
# git clone https://huggingface.co/THUDM/chatglm3-6b

# 下载Embedding 模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh.git
# git clone https://huggingface.co/BAAI/bge-large-zh

4.4、初始化配置和知识库

4.4.1、初始化配置
# 初始化Langchain-Chatchat-0.2.10\configs目录内的配置文件
$ python copy_config_example.py
  • 基础配置项 basic_config.py
    该配置基负责记录日志的格式和储存路径,通常不需要修改。
  • 模型配置项 model_config.py
EMBEDDING_MODEL = "bge-large-zh"  # 修改为bge-large-zh
# Embedding 模型运行设备。设为 "auto" 会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中
EMBEDDING_DEVICE = "cuda"

# 要运行的 LLM 名称,可以包括本地模型和在线模型。列表中本地模型将在启动项目时全部加载。
# 列表中第一个模型将作为 API 和 WEBUI 的默认模型。
# 在这里,我们使用目前主流的两个离线模型,其中,chatglm3-6b 为默认加载模型。
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"]
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
LLM_DEVICE = "cuda" # 修改为cpu
MODEL_PATH = {
    "embed_model": {
        ......
        "bge-large-zh": "/mnt/d/project/python/model/BAAI/bge-large-zh", # 修改为物理路径
        ......
    },

    "llm_model": {
        ......
        "chatglm3-6b": "/mnt/d/project/python/model/THUDM/chatglm3-6b", # 修改为物理路径
        ......
    },
  • 提示词配置项 prompt_config.py
    提示词配置分为三个板块,分别对应三种聊天类型。
llm_chat: 基础的对话提示词, 通常来说,直接是用户输入的内容,没有系统提示词。
knowledge_base_chat: 与知识库对话的提示词,在模板中,我们为开发者设计了一个系统提示词,开发者可以自行更改。
agent_chat: 与Agent对话的提示词,同样,我们为开发者设计了一个系统提示词,开发者可以自行更改。
# prompt模板使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号 请注意,本配置文件支持热加载,修改prompt模板后无需重启服务。
  • 数据库配置 kb_config.py
  • 服务和端口配置项 server_config.py
# 这些模型必须是在model_config.MODEL_PATH或ONLINE_MODEL中正确配置的。
# 在启动startup.py时,可用通过`--model-name xxxx yyyy`指定模型,不指定则为LLM_MODELS
FSCHAT_MODEL_WORKERS = {
    ......
    "chatglm3-6b": {
        "device": "cuda", # 配置为cuda
    },
   ......
}
4.4.2、初始化知识库
## 默认依赖包括基本运行环境(FAISS向量库),初始化自己的知识库
$ python init_database.py --recreate-vs

#如果您已经有创建过知识库,可以先执行以下命令创建或更新数据库表:
# python init_database.py --create-tables

4.5、运行

# 一键启动脚本 startup.py, 一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:
$ python startup.py -a

并可使用 Ctrl + C 直接关闭所有运行服务。

可选参数包括 -a (或–all-webui), --all-api, --llm-api, -c (或–controller), --openai-api, -m (或–model-worker), --api, --webui,其中:

  • –all-webui 为一键启动 WebUI 所有依赖服务;
  • –all-api 为一键启动 API 所有依赖服务;
  • –llm-api 为一键启动 Fastchat 所有依赖的 LLM 服务;
  • –openai-api 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
  • 其他为单独服务启动选项。
    若想指定非默认模型,需要用 --model-name 选项,示例:
$ python startup.py --all-webui --model-name Qwen-7B-Chat

更多信息可通过 python startup.py -h 查看。

4.6、运行

本文运行例子:上传一个PDF文档到知识库,并通过问答的方式提取PDF内容。

4.6.1、启动

在这里插入图片描述

4.6.2、启动创建知识库和上传pdf

在这里插入图片描述
在这里插入图片描述

4.6.3、问答提取内容

问答方式提取内容,除了第一个社会信用代码不准确外,其它问题都能返回准确答案
在这里插入图片描述

安装部署参考自

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1501730.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TimescaleDB 开源时序数据库

文章目录 1.TimescaleDB介绍2.Hypertable 和 chunk3.Hypertable4.Hypertable操作 开源中间件 # TimescaleDBhttps://iothub.org.cn/docs/middleware/ https://iothub.org.cn/docs/middleware/timescale/timescale-summary/1.TimescaleDB介绍 TimescaleDB是基于PostgreSQL数据…

在vue2中使用tailwindcss(完整教程)

如果你看过好多教程之后&#xff0c;还是报错&#xff0c;无法使用tailwindcss&#xff0c;我希望本教程可以让你成功上岸。 环境要求 node&#xff1a;>v14.17.0 安装tailwindcss 由于最新的tailwind css使用post css 8版本&#xff0c;vue2框架暂时还不支持&#xff0…

HTML5 基础1

<b> 和 <strong>的异同 相同点&#xff1a;在显示上&#xff0c;这两个标签都是加粗文本。 不同点&#xff1a;使用网页阅读器阅读网页&#xff08;盲人使用&#xff09;&#xff0c;strong 会重读&#xff0c;b 则不会。从起源上来说&#xff0c;strong 是为了在…

Word转PDF保持图片原有清晰度

目录 1、需要的软件 2、配置Acrobat PDFMaker 3、配置Acrobat Distiller 4、更改Acrobat PDFMaker中的首选项 5、将word转换成pdf 1、需要的软件 利用Adobe Acrobat DC工具。 打开word&#xff0c;选择Acrobat的插件&#xff0c;选择首选项。 如果没有出现Acrobat插件也…

git入门到精通

第3章 Git常用命令 3.1 设置用户签名 3.2 初始化本地库 3.3 查看本地 状态 3.3.1 首次查看&#xff08;工作区没有任何文件&#xff09; 3.3.2 新增文件&#xff08;hello.txt&#xff09; 3.3.3 再次查者&#xff08;检測到末追踪的文件&#xff09; 3.4添加暫存区 3…

Pytorch线性回归实现(Pycharm实现)

步骤都在注释里写清楚了&#xff0c;可以自己调整循环的次数观察输出的w与b和loss的值 import torch#学习率&#xff0c;用来进行w和b的更新 learning_rate 0.01 #1. 准备数据 #这里使用y3x0.8.也就是w3&#xff0c;b0.8.创造一个500行1列的数据 xtorch.rand([500,1]) y_true…

物联网,智慧城市的数字化转型引擎

随着科技的飞速发展&#xff0c;物联网&#xff08;IoT&#xff09;已成为推动智慧城市建设的关键力量。物联网技术通过连接各种设备和系统&#xff0c;实现数据的实时采集、传输和处理&#xff0c;为城市的智能化管理提供了强大的支持。在数字化转型的浪潮中&#xff0c;物联网…

图论入门题题解

✨欢迎来到脑子不好的小菜鸟的文章✨ &#x1f388;创作不易&#xff0c;麻烦点点赞哦&#x1f388; 所属专栏&#xff1a;刷题_脑子不好的小菜鸟的博客-CSDN博客 我的主页&#xff1a;脑子不好的小菜鸟 文章特点&#xff1a;关键点和步骤讲解放在 代码相应位置 拓扑排序 / 家谱…

精读《React Conf 2019 - Day2》

1 引言 这是继 精读《React Conf 2019 - Day1》 之后的第二篇&#xff0c;补充了 React Conf 2019 第二天的内容。 2 概述 & 精读 第二天的内容更为精彩&#xff0c;笔者会重点介绍比较干货的部分。 Fast refresh Fast refresh 是更好的 react-hot-loader 替代方案&am…

推荐一款go语言的开源物联网框架-opengw

推荐一款go语言的开源物联网框架&#xff0c;设计思想不错&#xff0c;值的学习。 技术交流 QQ群1028704210 官网及驱动下载 http://www.opengw.cn http://www.opengw.cn/col.jsp?id104 可执行文件下载 https://gitee.com/my_iot/goAdapter/releases 码云地址 https:/…

excel统计分析——重复测量设计

参考资料&#xff1a;生物统计学 裂区设计中的裂区通常是指空间上的裂区&#xff0c;如果对试验指标进行连续测量时&#xff0c;时间也可以作为裂区因素。重复测量设计实际上就是时间裂区设计。进行试验结果的统计分析时&#xff0c;将试验因素作为主区&#xff0c;时间因素作为…

开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)

一、前言 通过“开源模型应用落地-工具使用篇-Spring AI-Function Call&#xff08;八&#xff09;-CSDN博客”文章的学习&#xff0c;已经掌握了如何通过Spring AI集成OpenAI以及如何进行function call的调用&#xff0c;现在将进一步学习Spring AI更高阶的用法&#xff0c;如…

计算机设计大赛 深度学习验证码识别 - 机器视觉 python opencv

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x…

AutoDev 自定义 Agent:快速接入内部 AI Agent,构建 IDE 即 AI 辅助研发中心

在开源 AI IDE 插件 AutoDev 的 #51 issue 中&#xff0c;我们设计了 AutoDev 的 AI Agent 能力&#xff0c;半年后我们终于交付了这个功能。 在 AutoDev 1.7.0 中&#xff0c;你将可以接入内部的 AI Agent&#xff0c;并将其无缝与现有的 AI 辅助能力结合在一起。 本文将使用 …

Docker_搭建跨服务器网络通讯(swarm 集群)

本文目录 一、如何搭建docker的跨服务器网络1、在主服务器上初始化docker swarm 集群2、其他服务器节点加入到创建好的集群中3、检验集群是否搭建成功4、创建overlay类型的docker网络 二、如何部署服务1、docker部署2、docker-compose部署 一、如何搭建docker的跨服务器网络 1…

c#递归函数

在 C#中&#xff0c;递归函数是指在函数内部直接或间接调用自身的函数。递归函数在解决一些问题时非常有用&#xff0c;例如遍历树形结构、递归计算等。 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks…

springboot252基于Springboot和vue的餐饮管理系统的设计与实现

餐饮管理系统的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对信息管理混乱&#xff0c;出错率高&…

打造经典游戏:HTML5与CSS3实现俄罗斯方块

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

移动端精准测试之跨版本覆盖率合并

一&#xff0c;项目简介 在移动端项目测试过程中&#xff0c;尤其是发版前的回归测试阶段&#xff0c;会遇到这样的情况&#xff0c;在测试过程中测试不断地发现问题&#xff0c;开发就进行修改&#xff0c;然后打包测试。而测试完成后呢&#xff0c;业务测试同学想知道整个回归…

Xcode升级到Xcode15.1或15.2之后,无法新建Category和Extension文件,如何解决?

项目场景&#xff1a; Xcode升级到15.1或15.2之后&#xff0c;无法新建Category和Extension文件&#xff0c;并且Xcode不报任何错误 问题描述 Xcode升级到15.1或15.2之后&#xff0c;无法新建Category和Extension文件&#xff0c;并且Xcode不报任何错误。 具体的操作步骤如下…