万字详解,Java实现低配版线程池

news2024/11/19 2:47:32

文章目录

  • 1.什么是线程池
  • 2.线程池的优势
  • 3.原理
  • 4.代码编写
    • 4.1 阻塞队列
    • 4.2 ThreadPool线程池
    • 4.3 Worker工作线程
    • 4.4 代码测试
  • 5. 拒绝策略
    • 5.1 抽象Reject接口
    • 5.2 BlockingQueue新增tryPut方法
    • 5.3 修改ThreadPool的execute方法
    • 5.4 ThreadPool线程池构造函数修改
    • 5.5 拒绝策略实现
      • 1. 丢弃策略
      • 2. 移除最老元素
      • 3. 死等
      • 4. 抛出异常
    • 5.6 代码测试
  • 6.全部代码

1.什么是线程池

线程池,通过创建了一定数量的线程并将其维护在一个池(即容器)中。当有新的任务提交时,线程池会从池子中分配一个空闲线程来执行任务,而不是每次都新建线程。执行完任务后,线程不会被销毁,而是返回到线程池中等待下一个任务。

2.线程池的优势

  1. 避免线程的重复创建与销毁:对于需要执行的任务,如果每个任务都需要创建一个线程,线程执行完任务后销毁,那么会极大的造成资源的浪费。一方面任务数量可能会很庞大,创建与之匹配的线程会对内存造成严重消耗;另一方面,创建完的线程只工作一次,资本家看了落泪,md血亏啊
  2. 降低资源消耗:创建的线程反复利用,避免了创建与销毁带来的开销
  3. 提高工作的准备时间:被提交的任务可以迅速被线程池中存储的线程执行,无需重新创建

3.原理

线程池中存在以下核心组件

  • 线程池容器(存储工作线程)
  • 任务队列(存储需要执行的任务)

下述代码中,线程池使用HashSet存储;任务队列,使用的是这篇文章实现的BlockingQueue阻塞队列

另外,单纯的Thread线程能够存储的信息太少,因此我们创建Worker对象,extents Thread来包装Thread

下图是线程池的工作流程
在这里插入图片描述
大体来说,线程池执行逻辑分为三大步骤

  1. 如果current thread number < coreSize,创建核心线程执行任务

    tip:

    • current thread number在源码中,是有一个AtomicInteger变量ctl表示。ctl是核心线程池状态控制器,它被分为两个组成部分。其中,高三位表示runStatus,线程池状态;低三位表示workCount,工作线程数量。
    • 选择一个变量ctl同时存储runStatus和workCount,可以通过一次CAS操作实现原子赋值,而不用两次。
  2. 如果核心线程创建失败,或者核心线程数量过多,则将任务存储在阻塞队列中:在这一步中,存在非常多的细节。
    2.1. 如果当前线程池不处于RUNNING状态,尝试创建救急线程运行,不执行入队操作
    2.2. 如果入队失败,同样创建救急线程
    2.3. 如果线程池处于运行状态,且入队成功。进行double-check,重新检查线程池状态ctl
    2.4. 如果此时线程池不处于RUNNIG状态,移除刚入队的任务,并执行reject策略
    2.5. 如果线程池依然处于RUNNIG状态,且工作线程为0,创建救急线程,执行任务
  3. 如果上述步骤均失败,创建救济线程,如果依然失败,执行reject策略

4.代码编写

4.1 阻塞队列

实现请看BlockingQueue阻塞队列,本文不再赘述

4.2 ThreadPool线程池

/**
 * 线程池
 */
@Slf4j
public class ThreadPool {
    // 核心线程数
    private int coreSize;
    // 阻塞队列
    private BlockingQueue<Runnable> workQueue;
    // 队列容量
    private int capacity;
    // 工作线程
    private final HashSet<Worker> workers = new HashSet<>();

	// todo: Worker(详见下一部分)
	private final class Worker extents Thread { /*...*/ }
    
    public ThreadPool(int coreSize, int capacity) {
        this.coreSize = coreSize;
        this.capacity = capacity;
        this.workQueue = new BlockingQueue<>(capacity);
    }

    /**
     * 执行task任务. 如果当前线程数量 < coreSize, 创建线程执行
     * 否则加入阻塞队列. 如果阻塞队列已满, 执行当前拒绝策略
     * @param task 需要执行任务
     */
    public void execute(Runnable task) {
        if (task == null)
            throw new NullPointerException("task is null");
        synchronized (workers) {
            if (workers.size() < coreSize) {
                // 创建线程执行(我们倾向于创建新线程来执行任务, 而非已创建线程)
                log.info("创建worker");
                Worker worker = new Worker(task);
                workers.add(worker);
                worker.start(); // 千万别写成调用run方法, 否则主线程会阻塞(run不会开启线程)
            }else {
                log.info("添加阻塞队列");
                // 添加阻塞队列
                workQueue.put(task);
            }
        }
    }
}

上述代码实现简易版线程池。

  • workQueue:阻塞队列,用于存储待执行的任务
  • coreSize:核心线程数量
  • capacity:阻塞队列大小
  • workers:工作线程的存储容器(线程池),用HashSet实现。请注意,HashSet是线程不安全的,因此在对HashSet操作时,记得加锁保证不会出现并发问题

本节对execute执行逻辑进行一定的简化,暂时不考虑拒绝策略(后续介绍)。

  • 如果当前线程数量 < coreSize,创建核心线程并执行任务
  • 否则添加阻塞队列

tip: 如果任务数量超过阻塞队列容量,那么依据阻塞队列的性质,后续的所有线程都会阻塞,等待容量减少。

4.3 Worker工作线程

我们使用包装过后的线程对象。且Worker是ThreadPool的内部类

private final class Worker extends Thread {
    // 执行的任务
    private Runnable task;

    Worker(Runnable task) {
        this.task = task;
    }

    /**
     * 执行task任务, 如果task为null, 则从workQueue工作队列中获取任务
     * 如果工作队列中不存在等待执行的任务, 终止当前Worker工作线程
     */
    @Override
    public void run() {
        while (task != null || (task = workQueue.take()) != null) {
            try {
                log.info("运行任务");
                task.run();
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                task = null;
            }
        }
        // 移除当前工作线程
        synchronized (workers) {
            workers.remove(this);
        }
    }
}

为了简化代码编写,本文只存在核心线程。核心线程的工作是监视阻塞队列,获取待执行的任务并执行

run方法中,while循环的条件有二

  • task != null: worker线程创建时,会分配第一个待执行的任务。如果待执行的任务不为null,则执行任务
  • task = workQueue.take():worker线程持续监视workQueue阻塞队列中的任务,如果存在任务,获取并执行

tip: workQueue.take()是一个阻塞的方法,没有时间的限制。也就是说,哪怕workQueue为空,该方法也会死等下去

4.4 代码测试

import lombok.extern.slf4j.Slf4j;

@Slf4j
public class Test {
    public static void main(String[] args) throws InterruptedException {
        ThreadPool threadPool = new ThreadPool(2, 5);
        for (int i = 0; i < 10; i++) {
            int j = i;
            // 任务创建时间为2s, 任务消费时间显著低于任务创建时间.
            // 因此本模型是个典型的快生产, 慢消费的模型
            threadPool.execute(() -> {
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.info(String.valueOf(j));
            });
        }
    }
}

控制台输出

21:07:34.189 [main] INFO com.fgbg.juc.ThreadPool - 创建worker
21:07:34.202 [main] INFO com.fgbg.juc.ThreadPool - 创建worker
21:07:34.202 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.205 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.205 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.205 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.205 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.205 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:34.203 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:34.209 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:36.223 [Thread-0] INFO com.fgbg.juc.Test - 0
21:07:36.223 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:36.223 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:36.239 [Thread-1] INFO com.fgbg.juc.Test - 1
21:07:36.240 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:36.240 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:07:38.239 [Thread-0] INFO com.fgbg.juc.Test - 2
21:07:38.239 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:38.256 [Thread-1] INFO com.fgbg.juc.Test - 3
21:07:38.256 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:40.250 [Thread-0] INFO com.fgbg.juc.Test - 4
21:07:40.250 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:40.265 [Thread-1] INFO com.fgbg.juc.Test - 5
21:07:40.266 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:42.252 [Thread-0] INFO com.fgbg.juc.Test - 6
21:07:42.252 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:42.268 [Thread-1] INFO com.fgbg.juc.Test - 7
21:07:42.268 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:07:44.260 [Thread-0] INFO com.fgbg.juc.Test - 8
21:07:44.275 [Thread-1] INFO com.fgbg.juc.Test - 9

线程池核心线程数为2,因此一开始迅速创建2个worker线程。但因为阻塞队列容量为5,且每个线程工作需要2s,耗时远远小于任务产出的速度,因此队列被迅速沾满

当提交第8个任务时,主线程进入阻塞状态,无法继续提交任务(2个任务正在执行 + 5个任务添加阻塞队列 + 1个任务刚要入队,就阻塞了)

当第一个任务被执行完成,Thread-0 Worker执行阻塞队列中的其他任务。此时存在多余位置,之前被阻塞主线程成功提交任务,并继续循环

后续的流程大体一致,故不在做多余分析。

5. 拒绝策略

所谓拒绝策略,就是提供给调用方一个选择。如果调用方提交了过量的任务,多余的任务作何种处理。

由上方代码分析可知,我们一开始对于过量的任务,处理方案就是死等。但这种方案无法满足其他特定的需求,比如某个场景对执行速度有要求,等待一段时间后阻塞队列依然无法处理额外的任务,那么主线程就要抛弃该任务。死等是处理的方式之一,但存在不少的局限性,我们需要更多的处理方式。

对于不同的处理方式,我们可以选择将代码写死在ThreadPool中,但这样太不灵活,对于不同的场景,我们需要添加大量if else。因此我们可以采用策略模式,将拒绝的行为抽象成一个接口,创建ThreadPool时,由调用方传递接口。这样我们就可以在不改变ThreadPool内部代码的同时,改变ThreadPool面对超量任务的拒绝行为

5.1 抽象Reject接口

@FunctionalInterface
public interface RejectPolicy {
    // 执行拒绝策略
    void reject(Runnable task, BlockingQueue<Runnable> workQueue);
}

5.2 BlockingQueue新增tryPut方法

tryPut方法,尝试将元素立刻添加到阻塞队列中,不支持阻塞等待

// 尝试立即添加元素
public boolean tryPut(T task) {
    lock.lock();
    try {
        if (deque.size() == capacity) return false;
        deque.addLast(task);
        return true;
    } finally {
        lock.unlock();
    }
}

5.3 修改ThreadPool的execute方法

execute执行task入队操作时,如果入队失败(阻塞队列已满),则调用reject执行拒绝策略

    public void execute(Runnable task) {
        if (task == null)
            throw new NullPointerException("task is null");
        synchronized (workers) {
            if (workers.size() < coreSize) {
                // 创建线程执行(我们倾向于创建新线程来执行任务, 而非已创建线程)
                log.info("创建worker");
                Worker worker = new Worker(task);
                workers.add(worker);
                worker.start(); // 千万别写成调用run方法, 否则主线程会阻塞(run不会开启线程)
            }else {
                log.info("添加阻塞队列");
                /*----------------modify below-------------------*/
                // 添加阻塞队列
                // workQueue.put(task);
                // 添加失败
                if ( !workQueue.tryPut(task)) {
                    // 执行拒绝策略
                    rejectPolicy.reject(task, workQueue);
                }
            }
        }
    }

5.4 ThreadPool线程池构造函数修改

    // 拒绝策略
    private RejectPolicy rejectPolicy;
    
    public ThreadPool(int coreSize, int capacity, RejectPolicy rejectPolicy) {
        this(coreSize, capacity);
        this.rejectPolicy = rejectPolicy;
    }

5.5 拒绝策略实现

因为RejectPolicy接口有@FunctionalInterface,支持lambda表达式,因此编写的时候可以简写

1. 丢弃策略

(task, workQueue) -> {}

2. 移除最老元素

(task, workQueue) -> { workQueue.poll(); }

tip: 笔者自定义的BlockingQueue没有实现poll方法,各位读者如果感兴趣,可以自行实现。需要注意的是,记得加锁保证线程安全

3. 死等

(task, workQueue) -> { workQueue.put(task); }

4. 抛出异常

(task, workQueue) -> { new RuntimeException("workQueue is full"); }

5.6 代码测试

@Slf4j
public class Test3 {
    public static void main(String[] args) throws InterruptedException {
        ThreadPool threadPool = new ThreadPool(2, 5, (task, workQueue) -> {
            log.info("任务丢弃");
        });
        for (int i = 0; i < 10; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.info(String.valueOf(j));
            });
        }
    }
}

上述代码选择的拒绝策略是丢弃

控制台输出

21:46:37.621 [main] INFO com.fgbg.juc.ThreadPool - 创建worker
21:46:37.630 [main] INFO com.fgbg.juc.ThreadPool - 创建worker
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.Test3 - 任务丢弃
21:46:37.631 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.631 [main] INFO com.fgbg.juc.Test3 - 任务丢弃
21:46:37.632 [main] INFO com.fgbg.juc.ThreadPool - 添加阻塞队列
21:46:37.632 [main] INFO com.fgbg.juc.Test3 - 任务丢弃
21:46:37.633 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:39.636 [Thread-1] INFO com.fgbg.juc.Test3 - 1
21:46:39.636 [Thread-0] INFO com.fgbg.juc.Test3 - 0
21:46:39.636 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:39.636 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:41.644 [Thread-0] INFO com.fgbg.juc.Test3 - 3
21:46:41.645 [Thread-0] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:41.644 [Thread-1] INFO com.fgbg.juc.Test3 - 2
21:46:41.645 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:43.651 [Thread-1] INFO com.fgbg.juc.Test3 - 5
21:46:43.651 [Thread-0] INFO com.fgbg.juc.Test3 - 4
21:46:43.651 [Thread-1] INFO com.fgbg.juc.ThreadPool - 运行任务
21:46:45.657 [Thread-1] INFO com.fgbg.juc.Test3 - 6

由日志可知,第8,9,10号任务被丢弃。任务对应的输出为7,8,9。观察输出的数字,发现最大值为6。因此确认了7~10号任务全部被拒绝,测试成功

6.全部代码

BlockingQueue


import java.util.ArrayDeque;
import java.util.Deque;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

// 消息队列(阻塞队列)
class BlockingQueue<T> {
    // 队列
    private Deque<T> deque = new ArrayDeque<>();
    // 容量
    private int capacity;
    // 锁
    private final ReentrantLock lock = new ReentrantLock();
    // 消费者等待条件
    private Condition consumerWaitSet = lock.newCondition();
    // 生产者等待条件
    private Condition producerWaitSet = lock.newCondition();

    public BlockingQueue(int capacity) {
        this.capacity = capacity;
    }

    // 添加元素
    public void put(T element) {
        lock.lock();
        try {
            // 队列已满
            while (deque.size() == capacity) {
                try {
                    // 阻塞等待
                    producerWaitSet.await();
                } catch (InterruptedException e) {
                }
            }
            // 添加元素
            deque.addLast(element);
            // 唤醒其它线程
            consumerWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }

    // 获取元素
    public T take() {
        lock.lock();
        try {
            // 判空
            while (deque.size() == 0) {
                try {
                    // 阻塞等待
                    consumerWaitSet.await();
                } catch (InterruptedException e) {
                }
            }
            // 获取元素
            T res = deque.pollFirst();
            producerWaitSet.signal();
            return res;
        } finally {
            lock.unlock();
        }
    }

    // 尝试立即添加元素
    public boolean tryPut(T task) {
        lock.lock();
        try {
            if (deque.size() == capacity) return false;
            deque.addLast(task);
            return true;
        } finally {
            lock.unlock();
        }
    }
}

RejectPolicy

@FunctionalInterface
public interface RejectPolicy {
    // 执行拒绝策略
    void reject(Runnable task, BlockingQueue<Runnable> workQueue);
}

ThreadPool

import lombok.extern.slf4j.Slf4j;

import java.util.HashSet;

/**
 * 线程池
 */
@Slf4j
public class ThreadPool {
    // 核心线程数
    private int coreSize;
    // 阻塞队列
    private BlockingQueue<Runnable> workQueue;
    // 队列容量
    private int capacity;
    // 工作线程
    private final HashSet<Worker> workers = new HashSet<>();
    // 拒绝策略
    private RejectPolicy rejectPolicy;

    private final class Worker extends Thread {
        // 执行的任务
        private Runnable task;

        Worker(Runnable task) {
            this.task = task;
        }

        /**
         * 执行task任务, 如果task为null, 则从workQueue工作队列中获取任务
         * 如果工作队列中不存在等待执行的任务, 终止当前Worker工作线程
         */
        @Override
        public void run() {
            while (task != null || (task = workQueue.take()) != null) {
                try {
                    log.info("运行任务");
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            // 移除当前工作线程
            synchronized (workers) {
                workers.remove(this);
            }
        }
    }

    public ThreadPool(int coreSize, int capacity) {
        this.coreSize = coreSize;
        this.capacity = capacity;
        this.workQueue = new BlockingQueue<>(capacity);
    }

    public ThreadPool(int coreSize, int capacity, RejectPolicy rejectPolicy) {
        this(coreSize, capacity);
        this.rejectPolicy = rejectPolicy;
    }

    /**
     * 执行task任务. 如果当前线程数量 < coreSize, 创建线程执行
     * 否则加入阻塞队列. 如果阻塞队列已满, 执行当前拒绝策略
     * @param task 需要执行任务
     */
    public void execute(Runnable task) {
        if (task == null)
            throw new NullPointerException("task is null");
        synchronized (workers) {
            if (workers.size() < coreSize) {
                // 创建线程执行(我们倾向于创建新线程来执行任务, 而非已创建线程)
                log.info("创建worker");
                Worker worker = new Worker(task);
                workers.add(worker);
                worker.start(); // 千万别写成调用run方法, 否则主线程会阻塞(run不会开启线程)
            }else {
                log.info("添加阻塞队列");
                // 添加阻塞队列
                // workQueue.put(task);
                // 添加失败
                if ( !workQueue.tryPut(task)) {
                    // 执行拒绝策略
                    rejectPolicy.reject(task, workQueue);
                }
            }
        }
    }
}

Test

import lombok.extern.slf4j.Slf4j;

@Slf4j
public class Test {
    public static void main(String[] args) throws InterruptedException {
        ThreadPool threadPool = new ThreadPool(2, 5);
        for (int i = 0; i < 10; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.info(String.valueOf(j));
            });
        }
    }
}

Test3

@Slf4j
public class Test3 {
    public static void main(String[] args) throws InterruptedException {
        ThreadPool threadPool = new ThreadPool(2, 5, (task, workQueue) -> {
            log.info("任务丢弃");
        });
        for (int i = 0; i < 10; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.info(String.valueOf(j));
            });
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1500924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python 基础知识点(蓝桥杯python科目个人复习计划60)

今日复习计划&#xff1a;做题 例题1&#xff1a;可构造的序列总数 问题描述&#xff1a; 构造王国一年一度的构造大赛又开始了&#xff0c;这次构造王国的国王将只给出两个数k和n&#xff0c;需要大家回答出能够构造多少个符合以下条件的序列&#xff1a; 序列的长度为n&a…

机器学习笔记 计算机视觉中的测距任务常见技术路线

一、计算机视觉中的测距任务 测距是计算机视觉中的一项关键任务,涉及测量物体和相机之间的距离。这些信息可用于多种应用,包括机器人、自动驾驶汽车和增强现实。测距技术有很多种,包括主动式和被动式,每种技术都有自己的优点和局限性。主动测距技术,例如飞行时间、结构光和…

达梦数据库将DMHR模式下的表(迁移)导出为EXCEL文件

数据库迁移工具&#xff08;Data Transfer Service&#xff09;位于/dm8/tool/dts.其中/dm8是数据库安装目录。 在创建数据库时我们如果勾选了 “创建示例库DMHR(R)”&#xff0c;数据库实例中就带有这个数据库。 这里是用MobaXterm客户端远程控制ip地址为192.168.148.130的虚…

微服务架构 | 多级缓存

INDEX 通用设计概述2 优势3 最佳实践 通用设计概述 通用设计思路如下图 内容分发网络&#xff08;CDN&#xff09; 可以理解为一些服务器的副本&#xff0c;这些副本服务器可以广泛的部署在服务器提供服务的区域内&#xff0c;并存有服务器中的一些数据。 用户访问原始服务器…

如何将github上代码克隆到本地

1、需求 想把github上一篇论文的代码下载到本地。 2、前提 本地电脑已经安装了Git。&#xff08;没有安装需要到官网下载安装&#xff09; 3、解决方法 大功告成

20 卷积层里的填充和步幅【李沐动手学深度学习v2课程笔记】

1. 填充和步幅 在上下左右分别填充一些0 2. 代码实现 2.1 填充 我们创建一个高度和宽度为3的二维卷积层&#xff0c;并在所有侧边填充1个像素。给定高度和宽度为8的输入&#xff0c;则输出的高度和宽度也是8。 import torch from torch import nn# 为了方便起见&#xff0c;…

【前端】-初始前端以及html的学习

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …

实用干货:分享4个冷门但非常实用的HTML属性

大家好&#xff0c;我是大澈&#xff01; 本文约1100字&#xff0c;整篇阅读大约需要2分钟。 关注微信公众号&#xff1a;“程序员大澈”&#xff0c;免费加入问答群&#xff0c;一起交流技术难题与未来&#xff01; 现在关注公众号&#xff0c;免费送你 ”前后端入行大礼包…

详解float函数类型转换

函数描述 float([x]) 函数将数字或数字的字符串表示形式转换为与它等效的有符号浮点数。如果参数x是一个字符串&#xff08;十进制表示的数字串&#xff09;&#xff0c;数字前面可以添加符号来表示正数&#xff0c;或负数。符号和数字之间不能出现空格&#xff0c;但是符号前…

AI数据分析软件-BeepBI的诞生结束了传统BI时代,引领了数据分析零门槛的时代

#AI数据分析# 随着人工智能(AI)的日益成熟&#xff0c;数据分析领域正迎来一场革命性的变革。在这场变革中&#xff0c;DeepBI凭借实现了用ai数据分析&#xff0c;与传统BI工具相比&#xff0c;展现出了前所未有的便捷性和易上手特性&#xff0c;真正实现了数据分析的零门槛。…

灵魂指针,教给(二)

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 目录 一、数组名的理解 二、使用指针访问数组 三、一维数组传参本质 四、冒泡排序 五、二级指针 六、指针数组 七、指针数组…

JavaWeb——014SpringBoot原理(配置优先级、Bean管理、SpringBoot原理)

SpingBoot原理 目录 SpingBoot原理1. 配置优先级2. Bean管理2.1 获取Bean2.2 Bean作用域2.3 第三方Bean 3. SpringBoot原理3.1 起步依赖3.2 自动配置3.2.1 概述3.2.2 常见方案3.2.2.1 概述3.2.2.2 方案一3.2.2.3 方案二 3.2.3 原理分析3.2.3.1 源码跟踪3.2.3.2 Conditional 3.2…

Threejs用切线实现模型沿着轨道行驶

这次讲一个经常遇到的使用场景&#xff0c;让模型沿着轨迹运动&#xff0c;这个场景需要解决两个问题&#xff0c;第一是让模型沿着轨迹运动&#xff0c;第二是在沿着轨迹运动的同时&#xff0c;要保持模型的头部也时刻保持前方&#xff0c;而不是单纯的只是更新模型位置。 还是…

Type-C接口PD协议统一:引领电子科技新纪元的优势解析

在电子科技日新月异的今天&#xff0c;充电接口的统一化已经成为了业界的一大趋势。其中&#xff0c;Type-C接口凭借其传输速度快、使用便捷等优点&#xff0c;迅速成为了市场上的主流选择。而PD&#xff08;Power Delivery&#xff09;协议的统一&#xff0c;更是为Type-C接口…

jenkins+selenium+python实现web自动化测试

jenkinsselenium可以做到对web自动化的持续集成。 Jenkins的基本操作&#xff1a; 一、新建视图及job 新建视图&#xff1a; 新建job&#xff1a; 可以选择构建一个自由风格的软件项目或者复制已有的item 二、准备工作&#xff1a; 安装Jenkins插件&#xff0c;SSH plugin …

零基础,学6个月嵌入式,能找到工作吗?

今天看到一个老铁问&#xff0c;他报了个班&#xff0c;学6个月&#xff0c;学完能找到工作吗&#xff1f; 我看了下他的学习内容&#xff0c;包含C语言、数据结构、系统编程、网络编程、STM32、RTOS、物联网通讯协议、Linux内核驱动&#xff0c;这是大纲&#xff0c;细节的课程…

混合输入矩阵乘法的性能优化

作者 | Manish Gupta OneFlow编译 翻译&#xff5c;宛子琳、杨婷 AI驱动的技术正逐渐融入人们日常生活的各个角落&#xff0c;有望提高人们获取知识的能力&#xff0c;并提升整体生产效率。语言大模型&#xff08;LLM&#xff09;正是这些应用的核心。LLM对内存的需求很高&…

Haproxy介绍、安装

Haproxy介绍、安装 文章目录 Haproxy介绍、安装1.Haproxy介绍1.1 企业版1.2 社区版1.3 版本对比1.4 HAProxy功能 2.HAProxy安装2.1 主机初始化2.1.1 设置网卡名和ip地址2.1.2 配置镜像源2.1.3 关闭防火墙2.1.4 禁用SELinux2.1.5 设置时区 2.2 包安装2.2.1 Ubuntu 安装2.2.2 Cen…

透视B站财报:从前景看“钱景”

3月7日晚&#xff0c;哔哩哔哩发布了2023年度及第四季度财报。 财报显示&#xff0c;哔哩哔哩2023年总营收225亿元&#xff0c;净亏损同比大幅收窄49%&#xff0c;其中第四季度总营收达63.5亿元。 在后续电话会议上&#xff0c;哔哩哔哩管理层对市场上重点关注的“B站2024年能…

python界面开发 - Menu (popupmenu) 右键菜单

文章目录 1. python图形界面开发1.1. Python图形界面开发——Tkinter1.2. Python图形界面开发——PyQt1.3. Python图形界面开发——wxPython1.4. Python图形界面开发—— PyGTK&#xff1a;基于GTK1.5. Python图形界面开发—— Kivy1.6. Python图形界面开发——可视化工具1.7. …