I2C总线驱动

news2024/10/6 20:35:29

一. I2C背景知识

SOC芯片平台的外设分为:

  1. 一级外设:外设控制器集成在SOC芯片内部
  2. 二级外设:外设控制器由另一块芯片负责,通过一些通讯总线与SOC芯片相连

在这里插入图片描述
Inter-Integrated Circuit: 字面意思是用于“集成电路之间”的通信总线,简写:IIC(或者I2C)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
i2c传输的要点就是: 传输一个字节 后面必然紧跟一个"响应"信号----应答信号.这个响应信号可能来自主机,或者是从机,具体是谁,就要看传输方向。
传输方向分两种情况(每种情况又有两种可能: A无应答和 B有应答):

1.主机->从机,主机对从机发一个字节之后,主机要读取从机的响应信号(主机读SDA线)

A) 主机读SDA为高电平,说明从机无应答(意味着从机接收完毕,主机发送停止信号)
B) 主机读SDA为低电平,说明从机有应答。(可继续发送下一个字节)

2.从机->主机, 主机读取从机一个字节之后,主机要向从机发送一个响应信号(主机写SDA线)

​A) 主机写SDA为高电平,从机收到主机的无应答信号之后,从机停止传输,等待主机的停止信号。
B) 主机写SDA为低电平,从机收到主机的应答信号之后,从机继续输出下一字节

二、Exynos4412 I2C收发实现之裸机版

I2CCON寄存器:控制寄存器
在这里插入图片描述
第7位:决定是否允许产生应答信号,无论发送还是接收前,需置1
第6位:传输时时钟线分频,一般选置1
第5位:决定是否开启发送或接收结束时发通知,无论发送还是接收前,需置1
第4位:接收或发送是否完毕可以通过检查此位是否为1,接收或发送完毕后需置0
I2CSTAT寄存器:状态寄存器
在这里插入图片描述
第6、7位:每次传输前需选择传输模式
第5位:置0产生将产生终止信号,传输前置1产生起始信号
第4位:使能数据输出,传输前需置1

I2CDS寄存器:数据寄存器,发送前被发送的数据存放处,接收后结果也从此处读取

2.1 发送

在这里插入图片描述
在这里插入图片描述

/*
 *
 *
 */
void iic_write (unsigned char slave_addr, unsigned char addr, unsigned char data)
{
    //从设备寻址
	I2C5.I2CDS = slave_addr;  //把地址(slave_addr)写入到数据寄存器中——I2CDS
	I2C5.I2CCON = 1<<7 | 1<<6 | 1<<5;/*ENABLE ACK BIT, PRESCALER:512, ,ENABLE RX/TX */    //把I2CCON控制寄存器的第7位写1————应答使能、第6位写1————512分频,第5位写1————产生起始信号
	
    I2C5.I2CSTAT = 0x3 << 6 | 1<<5 | 1<<4;/*Master Trans mode ,START ,ENABLE RX/TX ,*/       //6、7位写1——master transmit mode(主机发送模式)
	while(!(I2C5.I2CCON & (1<<4)));
//写寄存器
	I2C5.I2CDS = addr;
	I2C5.I2CCON &= ~(1<<4);	//Clear pending bit to resume.
	while(!(I2C5.I2CCON & (1<<4)));//等待I2CCON的第4位为1,即数据传输完成

//发送数据
	I2C5.I2CDS = data;	// Data
	I2C5.I2CCON &= ~(1<<4);	//Clear pending bit to resume.
	while(!(I2C5.I2CCON & (1<<4)));

	I2C5.I2CSTAT = 0xD0; //stop信号

	I2C5.I2CCON &= ~(1<<4);//Clear pending bit to resume.

	mydelay_ms(10);
}

2.1 接受

在这里插入图片描述
在这里插入图片描述

void iic_read(unsigned char slave_addr, unsigned char addr, unsigned char *data)
{
//从设备寻址
	I2C5.I2CDS = slave_addr;

	I2C5.I2CCON = 1<<7 | 1<<6 | 1<<5;/*ENABLE ACK BIT, PRESCALER:512, ENABLE RX/TX Interrupt-enable */
	I2C5.I2CSTAT = 0x3 << 6 | 1<<5 | 1<<4;/*Master Trans mode ,START ,ENABLE RX/TX ,*/
	while(!(I2C5.I2CCON & (1<<4))); /*对应位为1表示slave_addr传输完成,线路处于挂起状态*/
	
//写寄存器
	I2C5.I2CDS = addr;
	I2C5.I2CCON &= ~(1<<4);	//Clear pending bit to resume. 继续传输
	while(!(I2C5.I2CCON & (1<<4)));
    
	/*清除中断挂起标志位  重新开始一次通信  改变数据传送方向*/
		//    I2C5.I2CSTAT = 0xD0; //stop  第5位写0,表示要求产生stop信号
	I2C5.I2CCON = I2C5.I2CCON & (~(1<<4));
//接收数据
	I2C5.I2CDS = slave_addr | 0x01;	// Read
	I2C5.I2CCON = 1<<7 | 1<<6 | 1<<5;/*ENABLE ACK BIT, PRESCALER:512, ENABLE RX/TX Interrupt-enable */

	I2C5.I2CSTAT = 2<<6 | 1<<5 | 1<<4;/*Master receive mode ,START ,ENABLE RX/TX , 0xB0*/
	while(!(I2C5.I2CCON & (1<<4)));

	I2C5.I2CCON &= ~((1<<7) | (1<<4));/* Resume the operation  & no ack*/
	while(!(I2C5.I2CCON & (1<<4)));
	
	*data = I2C5.I2CDS;
	
	I2C5.I2CSTAT = 0x90; //stop  第5位写0,表示要求产生stop信号
	I2C5.I2CCON &= ~(1<<4);		/*clean interrupt pending bit  */

	mydelay_ms(10);
}

三、Linux内核对I2C总线的支持

在这里插入图片描述
**I2C设备驱动:**即挂接在I2C总线上的二级外设的驱动,也称客户(client)驱动,实现对二级外设的各种操作,二级外设的几乎所有操作全部依赖于对其自身内部寄存器的读写,对这些二级外设寄存器的读写又依赖于I2C总线的发送和接收

**I2C总线驱动:**即对I2C总线自身控制器的驱动,一般SOC芯片都会提供多个I2C总线控制器,每个I2C总线控制器提供一组I2C总线(SDA一根+SCL一根),每一组被称为一个I2C通道,Linux内核里将I2C总线控制器叫做适配器(adapter),适配器驱动主要工作就是提供通过本组I2C总线与二级外设进行数据传输的接口,每个二级外设驱动里必须能够获得其对应的adapter对象才能实现数据传输

**I2C核心:**承上启下,为I2C设备驱动和I2C总线驱动开发提供接口,为I2C设备驱动层提供管理多个i2c_driver、i2c_client对象的数据结构,为I2C总线驱动层提供多个i2c_algorithm、i2c_adapter对象的数据结构

四大核心对象之间的关系图
在这里插入图片描述
i2c二级外设驱动开发涉及到核心结构体及其相关接口函数:

i2c二级外设驱动开发涉及到核心结构体及其相关接口函数:

struct i2c_board_info {
    char        type[I2C_NAME_SIZE];
    unsigned short  flags;
    unsigned short  addr;
    void        *platform_data;
    struct dev_archdata *archdata;
    struct device_node *of_node;
    int     irq;
};
/*用来协助创建i2c_client对象
重要成员
type:用来初始化i2c_client结构中的name成员
flags:用来初始化i2c_client结构中的flags成员
addr:用来初始化i2c_client结构中的addr成员
platform_data:用来初始化i2c_client结构中的.dev.platform_data成员
archdata:用来初始化i2c_client结构中的.dev.archdata成员
irq:用来初始化i2c_client结构中的irq成员

关键就是记住该结构和i2c_client结构成员的对应关系。在i2c子系统不直接创建i2c_client结构,只是提供struct i2c_board_info结构信息,让子系统动态创建,并且注册。
*/
struct i2c_client {
    unsigned short flags;
    unsigned short addr;
    char name[I2C_NAME_SIZE];
    struct i2c_adapter *adapter;
    struct i2c_driver *driver;
    struct device dev;
    int irq;
    struct list_head detected;
};
/*重要成员:
flags:地址长度,如是10位还是7位地址,默认是7位地址。如果是10位地址器件,则设置为I2C_CLIENT_TEN
addr:具体I2C器件如(at24c02),设备地址,低7位
name:设备名,用于和i2c_driver层匹配使用的,可以和平台模型中的平台设备层platform_driver中的name作用是一样的。
adapter:本设备所绑定的适配器结构(CPU有很多I2C适配器,类似单片机有串口1、串口2等等,在linux中每个适配器都用一个结构描述)
driver:指向匹配的i2c_driver结构,不需要自己填充,匹配上后内核会完成这个赋值操作
dev:内嵌的设备模型,可以使用其中的platform_data成员传递给任何数据给i2c_driver使用。
irq:设备需要使用到中断时,把中断编号传递给i2c_driver进行注册中断,如果没有就不需要填充。(有的I2C器件有中断引脚编号,与CPU相连)
*/

/* 获得/释放 i2c_adapter 路径:i2c-core.c linux-3.5\drivers\i2c */
/*功能:通过i2c总线编号获得内核中的i2c_adapter结构地址,然后用户可以使用这个结构地址就可以给i2c_client结构使用,从而实现i2c_client进行总线绑定,从而增加适配器引用计数。
返回值:
NULL:没有找到指定总线编号适配器结构
非NULL:指定nr的适配器结构内存地址*/
struct i2c_adapter *i2c_get_adapter(int nr);


/*减少引用计数:当使用·i2c_get_adapter·后,需要使用该函数减少引用计数。(如果你的适配器驱动不需要卸载,可以不使用)*/
void i2c_put_adapter(struct i2c_adapter *adap);

/*
功能:根据参数adap,info,addr,addr_list动态创建i2c_client并且进行注册
参数:
adap:i2c_client所依附的适配器结构地址
info:i2c_client基本信息
addt_list: i2c_client的地址(地址定义形式是固定的,一般是定义一个数组,数组必须以I2C_CLIENT_END结束,示例:unsigned short ft5x0x_i2c[]={0x38,I2C_CLIENT_END};
probe:回调函数指针,当创建好i2c_client后,会调用该函数,一般没有什么特殊需求传递NULL。
返回值:
非NULL:创建成功,返回创建好的i2c_client结构地址
NULL:创建失败
*/
struct i2c_client * i2c_new_probed_device
(
 struct i2c_adapter *adap,
 struct i2c_board_info *info,
 unsigned short const *addr_list,
 int (*probe)(struct i2c_adapter *, unsigned short addr)
);
/*示例:
struct i2c_adapter *ad;
struct i2c_board_info info={""};

unsigned short addr_list[]={0x38,0x39,I2C_CLIENT_END};

//假设设备挂在i2c-2总线上
ad=i2c_get_adapter(2);

//自己填充board_info 
strcpy(inf.type,"xxxxx");
info.flags=0;
//动态创建i2c_client并且注册
i2c_new_probed_device(ad,&info,addr_list,NULL);

i2c_put_adapter(ad);
*/

/*注销*/
void i2c_unregister_device(struct i2c_client *pclt)


 struct i2c_client * i2c_new_device
 (
     struct i2c_adapter *padap,
     struct i2c_board_info const *pinfo
 );
/*示例:
struct i2c_adapter *ad;
struct i2c_board_info info={
	I2C_BOARD_INFO(name,二级外设地址)
};
//假设设备挂在i2c-2总线上
ad=i2c_get_adapter(2);

//动态创建i2c_client并且注册
i2c_new_device(ad,&info);

i2c_put_adapter(ad);
*/
struct i2c_driver {
    unsigned int class;

    /* Standard driver model interfaces */
    int (*probe)(struct i2c_client *, const struct i2c_device_id *);
    int (*remove)(struct i2c_client *);

    /* driver model interfaces that don't relate to enumeration  */
    void (*shutdown)(struct i2c_client *);
    int (*suspend)(struct i2c_client *, pm_message_t mesg);
    int (*resume)(struct i2c_client *);
	void (*alert)(struct i2c_client *, unsigned int data);

    /* a ioctl like command that can be used to perform specific functions
     * with the device.
     */
    int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);

    struct device_driver driver;
    const struct i2c_device_id *id_table;

    /* Device detection callback for automatic device creation */
    int (*detect)(struct i2c_client *, struct i2c_board_info *);
    const unsigned short *address_list;
    struct list_head clients;
};
/*重要成员:
probe:在i2c_client与i2c_driver匹配后执行该函数
remove:在取消i2c_client与i2c_driver匹配绑定后后执行该函数
driver:这个成员类型在平台设备驱动层中也有,而且使用其中的name成员来实现平台设备匹配,但是i2c子系统中不使用其中的name进行匹配,这也是i2c设备驱动模型和平台设备模型匹配方法的一点区别
id_table:用来实现i2c_client与i2c_driver匹配绑定,当i2c_client中的name成员和i2c_driver中id_table中name成员相同的时候,就匹配上了。

补充:i2c_client与i2c_driver匹配问题
- i2c_client中的name成员和i2c_driver中id_table中name成员相同的时候
- i2c_client指定的信息在物理上真实存放对应的硬件,并且工作是正常的才会绑定上,并执行其中的probe接口函数这第二点要求和平台模型匹配有区别,平台模型不要求设备层指定信息在物理上真实存在就能匹配
*/

/*功能:向内核注册一个i2c_driver对象
返回值:0成功,负数 失败*/
#define i2c_add_driver(driver)     i2c_register_driver(THIS_MODULE, driver)
int i2c_register_driver(struct module *owner, struct i2c_driver *driver);

/*功能:从内核注销一个i2c_driver对象
返回值:无 */
void i2c_del_driver(struct i2c_driver *driver);
struct i2c_msg {
    __u16 addr; /* slave address            */
    __u16 flags;
#define I2C_M_TEN       0x0010  /* this is a ten bit chip address */
#define I2C_M_RD        0x0001  /* read data, from slave to master */
    __u16 len;      /* msg length               */
    __u8 *buf;      /* pointer to msg data          */
};
/* 重要成员:
addr:要读写的二级外设地址
flags:表示地址的长度,读写功能。如果是10位地址必须设置I2C_M_TEN,如果是读操作必须设置有I2C_M_RD······,可以使用或运算合成。
buf:要读写的数据指针。写操作:数据源 读操作:指定存放数据的缓存区
len:读写数据的数据长度
*/

/*i2c收发一体化函数,收还是发由参数msgs的成员flags决定*/
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
/*
功能:根据msgs进行手法控制
参数:
adap:使用哪一个适配器发送信息,一般是取i2c_client结构中的adapter指针作为参数
msgs:具体发送消息指针,一般情况下是一个数组
num:表示前一个参数msgs数组有多少个消息要发送的
返回值:
负数:失败
> 0 表示成功发送i2c_msg数量
*/

/*I2C读取数据函数*/
int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
/*功能:实现标准的I2C读时序,数据可以是N个数据,这个函数调用时候默认已经包含发送从机地址+读方向这一环节了
参数:
client:设备结构
buf:读取数据存放缓冲区
count:读取数据大小 不大于64k
返回值:
失败:负数
成功:成功读取的字节数
*/
    
/*I2C发送数据函数*/
int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
/*功能:实现标准的I2C写时序,数据可以是N个数据,这个函数调用时候默认已经包含发送从机地址+写方向这一环节了
参数:
client:设备结构地址
buf:发送数据存放缓冲区
count:发送数据大小 不大于64k
返回值:
失败:负数
成功:成功发送的字节数
*/

四、MPU6050

在这里插入图片描述

#define SMPLRT_DIV  0x19 //陀螺仪采样率,典型值:0x07(125Hz)
#define CONFIG   0x1A //低通滤波频率,典型值:0x06(5Hz)
#define GYRO_CONFIG  0x1B //陀螺仪自检及测量范围,典型值:0xF8(不自检,+/-2000deg/s)
#define ACCEL_CONFIG 0x1C //加速计自检、测量范围,典型值:0x19(不自检,+/-G)
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H  0x41
#define TEMP_OUT_L  0x42
#define GYRO_XOUT_H  0x43
#define GYRO_XOUT_L  0x44
#define GYRO_YOUT_H  0x45
#define GYRO_YOUT_L  0x46
#define GYRO_ZOUT_H  0x47
#define GYRO_ZOUT_L  0x48
#define PWR_MGMT_1  0x6B //电源管理,典型值:0x00(正常启用)

五、应用层直接使用I2C通道

5.1 预备工作:

5.1.1 exynos4412平台每个i2c通道的信息是通过设备树提供的,因此需要首先在exynos4412-fs4412.dts中增加5通道的节点:

在这里插入图片描述

  1. 回内核源码顶层目录执行:make dtbs
  2. 将新生成的dtb拷贝到/tftpboot

5.1.2 i2c总线驱动层提供了一个字符设备驱动,以便于应用层可以直接通过它去使用i2c总线通讯去操作二级外设,但需要

内核编译时添加此字符设备驱动代码(i2c-dev.c),因此需要修改make menuconfig的配置:
在这里插入图片描述

  1. 回内核源码顶层目录执行:make uImage
  2. 将新生成的uImage拷贝到/tftpboot

5.2 应用层直接使用i2c总线的代码实现

5.2.1 调用read、write实现接收、发送

在这里插入图片描述

5.2.2 调用ioctl实现接收、发送
在这里插入图片描述
在这里插入图片描述

缺点:

  1. 需要应用程序开发人员查阅原理图和芯片手册,增加了他们的开发负担
  2. 开发出的应用程序缺乏可移植性

六、I2C总线二级外设驱动开发方法

  1. 查阅原理图以便得知二级外设挂在哪条I2C总线上、二级外设的身份标识(二级外设自身的地址)

  2. 参照platform样式搭建二级外设驱动框架

  3. 查询二级外设芯片手册以便得知驱动需要用到的寄存器地址

    注意:

    1. 此处寄存器是指二级外设内部的寄存器,每个寄存器在芯片手册里有个对应编号(也被称为地址),但不是内存地址,特别提醒此寄存器不是SOC芯片内部参与内存统一编址的寄存器,更不是ARM核-CPU的寄存器
    2. 通过调用i2c_tranfer函数完成与相应寄存器的数据交互
  4. 参照字符驱动完成其余代码编写

  5. 创建对应的i2c_client对象

    linux-3.14\Documentation\i2c\instantiating-devices

    匹配方式:

    1. 名称匹配

    2. 设备树匹配

    3. ACPI匹配

      Advanced Configuration and Power Management Interface 高级配置和电源管理接口

      PC机平台采用的一种硬件配置接口

i2c二级外设驱动框架:

//其它struct file_operations函数实现原理同硬编驱动

static int mpu6050_probe(struct i2c_client *pclt,const struct i2c_device_id *pid)
{
    //做硬编驱动模块入口函数的活
}

static int mpu6050_remove(struct i2c_client *pclt)
{
    //做硬编驱动模块出口函数的活
}

/*名称匹配时定义struct i2c_device_id数组*/
static struct i2c_device_id mpu6050_ids = 
{
    {"mpu6050",0},
    //.....
    {}
};

/*设备树匹配时定义struct of_device_id数组*/
static struct of_device_id mpu6050_dts =
{
    {.compatible = "invensense,mpu6050"},
    //....
    {}
};

/*通过定义struct i2c_driver类型的全局变量来创建i2c_driver对象,同时对其主要成员进行初始化*/
struct i2c_driver mpu6050_driver = 
{
	.driver = {
        .name = "mpu6050",
        .owner = THIS_MODULE,
        .of_match_table = mpu6050_dts,
    },
    .probe = mpu6050_probe,
    .remove = mpu6050_remove,
    .id_table = mpu6050_ids,
};

/*以下其实是个宏,展开后相当于实现了模块入口函数和模块出口函数*/
module_i2c_driver(mpu6050_driver);

MODULE_LICENSE("GPL");

七、I2C总线二级外设驱动开发之名称匹配

这种匹配方式需要自己创建i2c_client对象

创建i2c_client对象有三种方式:

  1. i2c_register_board_info

    1.当开发板上电内核跑起来的时候,肯定是架构相关的程序首先运行,也就是mach-xxx.c
    2. mach-xxx.c文件里首先会定义i2c_board_info的结构体数组,在mach-xxx.c的初始化函数里调用
    i2c_register_board_info函数把i2c_board_inifo链接进内核的i2c_board_list链表当中去
    3.在驱动i2c目录下和开发板板对应的驱动文件i2c-xxx.c里,创建i2c_adapter对象
    4.这种方式严重依赖平台,缺乏灵活性,基本会被遗弃
    
  2. i2c_new_device:明确二级外设地址的情况下可用

    i2c二级外设client框架:

    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/i2c.h>
    
    static struct i2c_board_info mpu6050_info = 
    {
    	I2C_BOARD_INFO("mpu6050",二级外设地址)   
    };
    
    static struct i2c_client *mpu6050_client;
    static int __init mpu6050_dev_init(void)
    {
        struct i2c_adapter *padp = NULL;
        padp = i2c_get_adapter(i2c通道编号);
        mpu6050_client = i2c_new_device(padp,&mpu6050_info);
        i2c_put_adapter(padp);
        return 0;
    }
    module_init(mpu6050_dev_init);
    
    static void __exit mpu6050_dev_exit(void)
    {
        i2c_unregister_device(mpu6050_client);
    }
    module_exit(mpu6050_dev_exit);
    MODULE_LICENSE("GPL");
    
  3. i2c_new_probed_device

    i2c二级外设client框架:不明确二级外设地址,但是知道是可能几个值之一的情况下可用

    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/i2c.h>
    
    static const unsigned short addr_list[] = 
    {
    	0x68,
        //.....
        I2C_CLIENT_END
    };
    
    static struct i2c_client *mpu6050_client;
    static int __init mpu6050_dev_init(void)
    {
        struct i2c_adapter *padp = NULL;
        struct i2c_board_info mpu6050_info = {""};
        
        strcpy(mpu6050_info.type,"mpu6050");
        
        padp = i2c_get_adapter(i2c通道编号);
        mpu6050_client = i2c_new_probed_device(padp,&mpu6050_info,addr_list,NULL);
        i2c_put_adapter(padp);
        if(mpu6050_client != NULL)
        {
            return 0;
        }
        else
        {
        	return -ENODEV;
        }
    }
    module_init(mpu6050_dev_init);
    
    static void __exit mpu6050_dev_exit(void)
    {
        i2c_unregister_device(mpu6050_client);
    }
    module_exit(mpu6050_dev_exit);
    MODULE_LICENSE("GPL");
    

八、I2C总线二级外设驱动开发之设备树匹配

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/149350.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SELECT COUNT(*) 会造成全表扫描?回去等通知吧

本文已经收录到Github仓库&#xff0c;该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点&#xff0c;欢迎star~ Github地址&#xff1a;https://github.com/T…

CPU_并行(多线程)不同高性能旋转图片

并行(多线程)不同高性能旋转图片 代码 ImageStuff.h struct ImgProp {int Hpixels;int Vpixels;unsigned char HeaderInfo[54];unsigned long int Hbytes; };struct Pixel {unsigned char R;unsigned char G;unsigned char B; };unsigned char** CreateBlankBMP(); unsigned…

Java中>>,>>=,<<,<<=运算符

今天在刷LeetCode的时候遇到了一个运算符<<&#xff0c;对这个运算符的意思有点模糊&#xff0c;然后便开始面向百度学习&#xff0c;但是发现&#xff0c;很多篇帖子表达的意思太文章化&#xff0c;不够通俗易懂&#xff0c;于是打算写下这篇帖子&#xff0c;让大家能够…

工作笔记——微信支付开发相关知识整理

在最近的工作中&#xff0c;引入了微信小程序支付&#xff0c;在开发过程中积累和整理了一些技术知识&#xff0c;现将其整理如下 目录 一、概念认识 &#xff08;一&#xff09;术语介绍 &#xff08;二&#xff09;名词解释 &#xff08;四&#xff09;对接微信支付接口规…

Win10安卓子系统安装教程

Win10安卓子系统安装教程必要安装文件下载和安装子系统安装方法方法一&#xff1a;安装 WSA PacMan方法二&#xff1a;安装 APK安装程序必要安装文件下载和安装 win10安卓子系统和win11子系统的安装一样&#xff0c;都必须要安装适用于 Android ™的 Windows 子系统设置的软件…

Java设计模式中行为型模式是什么/模板方式又是什么,编程怎么运用

继续整理记录这段时间来的收获&#xff0c;详细代码可在我的Gitee仓库SpringBoot克隆下载学习使用&#xff01; 6.行为型模式 6.1 概述 6.1.1 特点 用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎么相互协作共同完成单个对象都无法单独完成任务涉…

分布式基础篇3——前端开发基础知识(谷粒商城)

前端技术对比一、ES61、简介2、什么是 JavaScript3、ES6新特性3.1 let3.2 const3.3 解构表达式3.4 字符串扩展3.5 函数优化3.6 对象优化3.7 map 和 reduce3.8 Promise3.9 模块化二、Vue1、MVVM 思想2、Vue 简介3、Vue 入门案例4、Vue 指令插值表达式v-text、v-htmlv-bindv-mode…

【CANN训练营第三季】基于昇腾PyTorch框架的模型训练调优

文章目录性能分析工具PyTorch Profiling性能分析工具CANN Profiling结业考核1、使用Pytorch实现LeNet网络的minist手写数字识别。2、采用课程中学习到的手工或者自动迁移方式&#xff0c;将上述脚本迁移到昇腾npu上&#xff0c;单机单卡&#xff0c;提供迁移脚本&#xff0c;突…

YOLOv5视觉AI库安装

打开YOLOv5开源仓库: https://github.com/ultralytics/yolov5/blob/master/README.zh-CN.md下载源码:安装 : pip install -r requirements.txt完成安装目标检测推理可通过PyTorch Hub加载YOLOv5检测模型检测图像并返回数据帧使用YOLOv5要先安装opencv-python和pandas库安装open…

C#,图像二值化(18)——全局阈值的模糊集理论算法(Huang Thresholding)与源程序

1 模糊集理论模糊集理论,也称为模糊集合论,或简单地称为模糊集,1965年美国学者扎德在数学上创立了一种描述模糊现象的方法—模糊集合论。这种方法把待考察的对象及反映它的模糊概念作为一定的模糊集合&#xff0c;建立适当的隶属函数&#xff0c;通过模糊集合的有关运算和变换&…

arduino - pinMode参数1的确定 - 以arduino nano every核心板为例

文章目录arduino - pinMode参数1的确定 - 以arduino nano every核心板为例概述笔记pins_arduino.hABX00028-datasheet.pdf简单的辨认管脚号就照ABX00028-datasheet.pdf来ENDarduino - pinMode参数1的确定 - 以arduino nano every核心板为例 概述 arduino nano every的核心板使…

我的交易抽象思路分享

这几天我老是抛出一些问题给老师们&#xff0c;都是故意而为之&#xff0c;因为我靠这种方式自己引导自己很多年&#xff1b; 比如&#xff1a;龙头真的存在么&#xff1f;为何前几天它还不是龙头&#xff0c;怎么今天就是了&#xff1f; 再如&#xff1a;交易模式和交易系统…

微信小程序解密encryptedData报错pad block corrupted

前要&#xff1a; 今天调试一下微信授权登录的时候老是第一次报错解密失败pad block corrupted&#xff0c;第二次授权的时候正常&#xff0c;因为第一次已经获取到手机号码&#xff01; 后端代码&#xff1a; public static JSONObject getUserInfo(String encryptedData, S…

微信自动回复软件

软件介绍 软件名称&#xff1a; 微信超级管家 适用平台&#xff1a; windows 是否免费&#xff1a; 完全免费 病毒检测&#xff1a; 火绒安全检测通过 流氓检测&#xff1a; 无广告、无弹窗、无其他流氓行为 软件大小&#xff1a; 183M 这个软件依赖的是本地微信客户端&#x…

C++ 初始化列表详解

目录 1.什么是初始化列表 2.什么时候需要使用初始化列表&#xff1f; 3.初始化列表的效率 4.初始化列表的初始化顺序 1.什么是初始化列表 class A { public:A(int value):m_dada(value){}private:int m_dada; }; 如上图&#xff0c;红色圈起来的部分&#xff0c;就是构造函…

MXNet的Faster R-CNN(基于区域提议网络的实时目标检测)《5》

在上一篇文章的介绍中&#xff0c;我们知道语义分割可以对图像中的每个像素进行类别预测。这节主要讲关于全卷积网络(Fully Convolutional Network,FCN)&#xff0c;实现从图像像素到像素类别的变换。 那这里的卷积神经网络跟以往的有什么不一样的地方吗? 这里的网络是通过转置…

Java中享元模式是什么/享元模式有什么用,编程如何实现,哪里用到了享元模式

继续整理记录这段时间来的收获&#xff0c;详细代码可在我的Gitee仓库SpringBoot克隆下载学习使用&#xff01; 5.8 享元模式 5.8.1 概述 运用共享技术来有效地支持大量细粒度对象的复用&#xff0c;通过共享已经存在的对象来大幅度减少需要创建的对象数量、避免大量相似对象…

图文并茂strapi 4.5.5自定义搭建指南以及数据库字段名接口返回mapping分析

strapi是什么&#xff1f; 基于Nodejs的开源免费CMS框架 为什么选择它&#xff1f; 基于nodejs,100&#xff05;JavaScript&#xff0c;上手迅速可轻松创建功能强大且可自定义的API可以使用任何喜欢的数据库 先决条件 首先你的电脑需要具备以下环境&#xff0c;再执行命令…

技术破局:程序员2023为何跳出舒适圈?

1前言今天的冬日暖阳高照&#xff0c;给我羽绒服下的肉身火一般的燥热&#xff0c;给了我一个错觉&#xff0c;以为到了阳春三月。刚刚送完老妈还有老婆孩子回老家&#xff0c;我坐到电脑机器前&#xff0c;准备捋一下思绪&#xff0c;回首2022的生活和工作。 2 2022 回顾今年用…

Linux下C/C++实现cpustat(测量CPU利用率)

在Linux中&#xff0c;cpustat定期转储正在运行的进程的当前CPU利用率统计信息。cpustat已被优化为具有最小的CPU开销&#xff0c;与top相比&#xff0c;通常使用约35%的CPU。cpustat还包括一些简单的统计分析选项&#xff0c;可以帮助描述CPU的加载方式。 cpustat介绍 cpust…