线程池 - ThreadPoolExecutor 详解
线程池 ThreadPoolExecutor 源码解析参考 juc 专栏系列文章。
基本概述
线程池:一个容纳多个线程的容器,容器中的线程可以重复使用,省去了频繁创建和销毁线程对象的操作。
线程池作用:
- 降低资源消耗,减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
- 提高响应速度,当任务到达时,如果有线程可以直接用,不会出现系统僵死。
- 提高线程的可管理性,如果无限制的创建线程,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
线程池的核心思想:线程复用,同一个线程可以被重复使用,来处理多个任务。
池化技术 (Pool) :一种编程技巧,核心思想是资源复用,在请求量大时能优化应用性能,降低系统频繁建连的资源开销。
自定义线程池
说明
代码实现的是一个简易的线程池,
只实现了核心线程数,没有实现最大线程数
,即当线程池内线程数到达了 coreSize,新来的任务直接放入队列,如果队列满了的话直接就走拒绝策略了,没有设置最大线程数 maxSize。
1) 自定义拒绝策略接口
- 设计模式 -
策略模式
:把具体的操作抽象成接口,具体的实现由调用者传递进来。
// 拒绝策略
@FunctionalInterface
interface RejectPolicy<T> {
void reject(BlockingQueue<T> queue, T task);
}
2) 自定义任务队列
// 阻塞队列 用来协调生产者与消费者
class BlockingQueue<T> {
// 1.任务队列
private Deque<T> queue = new ArrayDeque<>();
// 2.锁
private ReentrantLock lock = new ReentrantLock();
// 3.生产者条件变量
private Condition fullWaitSet = lock.newCondition();
// 4.消费者条件变量
private Condition emptyWaitSet = lock.newCondition();
// 5.容量
private int capcity;
public BlockingQueue(int capcity) {
this.capcity = capcity;
}
// 带超时阻塞获取
public T poll(long timeout, TimeUnit unit) {
lock.lock();
try {
// 将 timeout 统一转换为 纳秒
long nanos = unit.toNanos(timeout);
while (queue.isEmpty()) {
try {
// 返回值是剩余时间
if (nanos <= 0) {
return null;
}
nanos = emptyWaitSet.awaitNanos(nanos);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.removeFirst();
fullWaitSet.signal();
return t;
} finally {
lock.unlock();
}
}
// 阻塞获取
public T take() {
lock.lock();
try {
while (queue.isEmpty()) {
try {
emptyWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.removeFirst();
fullWaitSet.signal();
return t;
} finally {
lock.unlock();
}
}
// 阻塞添加
public void put(T task) {
lock.lock();
try {
while (queue.size() == capcity) {
try {
log.debug("等待加入任务队列 {} ...", task);
fullWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("加入任务队列 {}", task);
queue.addLast(task);
emptyWaitSet.signal();
} finally {
lock.unlock();
}
}
// 带超时时间阻塞添加
public boolean offer(T task, long timeout, TimeUnit timeUnit) {
lock.lock();
try {
long nanos = timeUnit.toNanos(timeout);
while (queue.size() == capcity) {
try {
if (nanos <= 0) {
return false;
}
log.debug("等待加入任务队列 {} ...", task);
nanos = fullWaitSet.awaitNanos(nanos);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("加入任务队列 {}", task);
queue.addLast(task);
emptyWaitSet.signal();
return true;
} finally {
lock.unlock();
}
}
public int size() {
lock.lock();
try {
return queue.size();
} finally {
lock.unlock();
}
}
public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
lock.lock();
try {
// 判断队列是否满
if (queue.size() == capcity) {
// 要执行的拒绝策略
rejectPolicy.reject(this, task);
} else { // 有空闲
log.debug("加入任务队列 {}", task);
queue.addLast(task);
emptyWaitSet.signal();
}
} finally {
lock.unlock();
}
}
}
3) 自定义线程池
class ThreadPool {
// 任务队列
private BlockingQueue<Runnable> taskQueue;
// 线程集合
private HashSet<Worker> workers = new HashSet<>();
// 核心线程数
private int coreSize;
// 获取任务时的超时时间
private long timeout;
private TimeUnit timeUnit;
// 拒绝策略
private RejectPolicy<Runnable> rejectPolicy;
// 执行任务
public void execute(Runnable task) {
// 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
// 如果任务数超过 coreSize 时,加入任务队列暂存
synchronized (workers) {
if (workers.size() < coreSize) {
Worker worker = new Worker(task);
log.debug("新增 worker{}, {}", worker, task);
workers.add(worker);
worker.start();
} else {
//taskQueue.put(task);
// 1) 死等
// 2) 带超时等待
// 3) 让调用者放弃任务执行
// 4) 让调用者抛出异常
// 5) 让调用者自己执行任务
// 策略模式-把具体的操作抽象成接口,具体的实现由调用者传递进来
taskQueue.tryPut(rejectPolicy, task);
}
}
}
public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity, RejectPolicy<Runnable> rejectPolicy) {
this.coreSize = coreSize;
this.timeout = timeout;
this.timeUnit = timeUnit;
this.taskQueue = new BlockingQueue<>(queueCapcity);
// 拒绝策略的具体的实现通过调用者使用构造方法传递进来
this.rejectPolicy = rejectPolicy;
}
class Worker extends Thread {
private Runnable task;
public Worker(Runnable task) {
this.task = task;
}
@Override
public void run() {
// 执行任务
// 1) 当 task 不为空,执行任务
// 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
//while(task != null || (task = taskQueue.take()) != null) {
while (task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
try {
log.debug("正在执行...{}", task);
task.run();
} catch (Exception e) {
e.printStackTrace();
} finally {
task = null;
}
}
synchronized (workers) {
log.debug("worker 被移除{}", this);
workers.remove(this);
}
}
}
}
4) 测试
public class TestPool {
public static void main(String[] args) {
ThreadPool threadPool = new ThreadPool(1,
1000, TimeUnit.MILLISECONDS, 1, (queue, task) -> { // 调用者选择拒绝策略
// 1) 死等
//queue.put(task);
// 2) 带超时等待
//queue.offer(task, 1500, TimeUnit.MILLISECONDS);
// 3) 让调用者放弃任务执行
//log.debug("放弃{}", task);
// 4) 让调用者抛出异常
//throw new RuntimeException("任务执行失败 " + task);
// 5) 让调用者自己执行任务
task.run();
});
for (int i = 0; i < 4; i++) {
int j = i;
threadPool.execute(() -> {
try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("{}", j);
});
}
}
}
拒绝策略演示效果
我们将阻塞队列的最大核心线程数设置为 1,也就是队列中只能存放 1 个线程,为了更方便的演示效果。
-
1)死等
需要将执行任务的耗时(代码中的 sleep 休眠时间)调大,这样就会一直等待任务执行完成,达到死等的效果。
18:05:24.718 c.ThreadPool [main] - 新增 workerThread[Thread-0,5,main], cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:05:24.722 c.BlockingQueue [main] - 加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:05:24.722 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:05:24.722 c.BlockingQueue [main] - 等待加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@5a39699c ...
-
2)带超时等待
总共执行 3 个任务,带超时的等待 超时时间为 500ms,而执行任务的时长需要 1000ms。
可以看出程序并没有进行死等,任务 0 先执行,任务 1 加入等待队列,过了 1s 任务 0 执行完,再过 1s 任务 1 也执行完成,但任务 2 在添加的过程中等待超时,并没有添加到阻塞队列中,所以任务 2 没有被执行。
18:10:40.295 c.ThreadPool [main] - 新增 workerThread[Thread-0,5,main], cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:10:40.298 c.BlockingQueue [main] - 加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:10:40.298 c.BlockingQueue [main] - 等待加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@5a39699c ... 18:10:40.298 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:10:41.311 c.TestPool [Thread-0] - 0 18:10:41.311 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:10:42.317 c.TestPool [Thread-0] - 1 18:10:43.321 c.ThreadPool [Thread-0] - worker 被移除Thread[Thread-0,5,main]
-
3)让调用者放弃任务执行
什么都不写,就是放弃了。我们可以用日志输出一段话。
总共执行 3 个任务,一上来就发现队列满了,所以任务 2 直接放弃执行,只执行了任务 0 和 1。
18:19:41.920 c.ThreadPool [main] - 新增 workerThread[Thread-0,5,main], cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:19:41.924 c.BlockingQueue [main] - 加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:19:41.925 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:19:41.925 c.TestPool [main] - 放弃cn.itcast.n8.TestPool$$Lambda$2/245672235@5a39699c 18:19:42.931 c.TestPool [Thread-0] - 0 18:19:42.932 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:19:43.941 c.TestPool [Thread-0] - 1 18:19:44.951 c.ThreadPool [Thread-0] - worker 被移除Thread[Thread-0,5,main]
-
4)让调用者抛出异常
抛出异常会让接下来剩余的任务都不执行了,此时我们把任务数调整到 4。
执行到第二个任务时抛异常了,所以第三个任务根本就没进来。
18:47:31.348 c.ThreadPool [main] - 新增 workerThread[Thread-0,5,main], cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:47:31.352 c.BlockingQueue [main] - 加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:47:31.352 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a Exception in thread "main" java.lang.RuntimeException: 任务执行失败cn.itcast.n8.TestPool$$Lambda$2/245672235@5a39699c at cn.itcast.n8.TestPool.lambda$main$0(TestPool.java:25) at cn.itcast.n8.BlockingQueue.tryPut(TestPool.java:250) at cn.itcast.n8.ThreadPool.execute(TestPool.java:83) at cn.itcast.n8.TestPool.main(TestPool.java:31) 18:47:32.353 c.TestPool [Thread-0] - 0 18:47:32.354 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:47:33.363 c.TestPool [Thread-0] - 1 18:47:34.375 c.ThreadPool [Thread-0] - worker 被移除Thread[Thread-0,5,main]
-
5)让调用者自己执行任务
直接调用任务的 run() 方法,实际上是主线程自己执行。
总共 4 个任务,任务 0 和 1 被 [Thread-0] 执行了,任务 2 和 3 被主线程 main 执行了。
18:58:03.790 c.ThreadPool [main] - 新增 workerThread[Thread-0,5,main], cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:58:03.794 c.BlockingQueue [main] - 加入任务队列 cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:58:03.794 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@66d33a 18:58:04.800 c.TestPool [Thread-0] - 0 18:58:04.800 c.TestPool [main] - 2 18:58:05.810 c.TestPool [main] - 3 18:58:05.810 c.ThreadPool [Thread-0] - 正在执行...cn.itcast.n8.TestPool$$Lambda$2/245672235@2c8d66b2 18:58:06.814 c.TestPool [Thread-0] - 1 18:58:07.817 c.ThreadPool [Thread-0] - worker 被移除Thread[Thread-0,5,main]
ThreadPoolExecutor
线程池的线程都是非守护线程。
1) 线程池状态
ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量。
状态名 | 高 3 位 | 接收新任务 | 处理阻塞队列任务 | 说明 |
---|---|---|---|---|
RUNNING | 111 | Y | Y | |
SHUTDOWN | 000 | N | Y | 不会接收新任务,但会处理阻塞队列剩余任务 |
STOP | 001 | N | N | 会中断正在执行的任务,并抛弃阻塞队列任务 |
TIDYING | 010 | - | - | 任务全执行完毕,活动线程为 0 即将进入终结 |
TERMINATED | 011 | - | - | 终结状态 |
从数字上比较,TERMINATED
> TIDYING
> STOP
> SHUTDOWN
> RUNNING
这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作进行赋值
// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }
2) 构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
- corePoolSize 核心线程数目(最多保留的线程数)
- maximumPoolSize 最大线程数目
- keepAliveTime 生存时间 - 针对救急线程
- unit 时间单位 - 针对救急线程
- workQueue 阻塞队列
- threadFactory 线程工厂 - 可以为线程创建时起个好名字
- handler 拒绝策略
工作方式:
- 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
- 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排队,直到有空闲的线程。
- 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。
- 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。
- 拒绝策略 jdk 提供了 4 种实现:
- AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
- CallerRunsPolicy 让调用者运行任务
- DiscardPolicy 放弃本次任务
- DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
- 其它著名框架也提供了实现:
- Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题
- Netty 的实现,是创建一个新线程来执行任务
- ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
- PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
- 拒绝策略 jdk 提供了 4 种实现:
- 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制。
根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。
3) newFixedThreadPool
创建一个固定大小的线程池
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
特点
核心线程数 == 最大线程数
(没有救急线程被创建),因此也无需超时时间- 阻塞队列是无界的,可以放任意数量的任务
评价
适用于任务量已知,相对耗时的任务
4) newCachedThreadPool
带缓冲的线程池
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
特点
- 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着
- 全部都是救急线程(60s 后可以回收)
- 救急线程可以无限创建
- 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)
SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
try {
log.debug("putting {} ", 1);
integers.put(1);
log.debug("{} putted...", 1);
log.debug("putting...{} ", 2);
integers.put(2);
log.debug("{} putted...", 2);
} catch (InterruptedException e) {
e.printStackTrace();
}
},"t1").start();
sleep(1);
new Thread(() -> {
try {
log.debug("taking {}", 1);
integers.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
},"t2").start();
sleep(1);
new Thread(() -> {
try {
log.debug("taking {}", 2);
integers.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
},"t3").start();
输出
11:48:15.500 c.TestSynchronousQueue [t1] - putting 1
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted...
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...
评价
整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。
适合任务数比较密集,但每个任务执行时间较短的情况。
5) newSingleThreadExecutor
单线程线程池
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
使用场景:
- 希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。
区别:
- 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作
- Executors.newSingleThreadExecutor() 线程个数始终为 1,不能修改
- FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法
- Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
- 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改
6) 提交任务
// 执行任务
void execute(Runnable command);
// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);
// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException;
// 提交 tasks 中所有任务,带超时时间
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException;
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException;
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
7) 关闭线程池
-
shutdown
/* 线程池状态变为 SHUTDOWN - 不会接收新任务 - 但已提交任务会执行完 - 此方法不会阻塞调用线程的执行 */ void shutdown();
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 修改线程池状态 advanceRunState(SHUTDOWN); // 仅会打断空闲线程 interruptIdleWorkers(); onShutdown(); // 扩展点 ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等) tryTerminate(); }
-
shutdownNow
/* 线程池状态变为 STOP - 不会接收新任务 - 会将队列中的任务返回 - 并用 interrupt 的方式中断正在执行的任务 */ List<Runnable> shutdownNow();
public List<Runnable> shutdownNow() { List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 修改线程池状态 advanceRunState(STOP); // 打断所有线程 interruptWorkers(); // 获取队列中剩余任务 tasks = drainQueue(); } finally { mainLock.unlock(); } // 尝试终结 tryTerminate(); return tasks; }
-
其它方法
// 不在 RUNNING 状态的线程池,此方法就返回 true boolean isShutdown(); // 线程池状态是否是 TERMINATED boolean isTerminated(); // 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待 boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
异步模式之工作线程
Worker Thread 模式
定义
让有限的工作线程(Worker Thread)来轮流异步处理无限多的任务。也可以将其归类为分工模式,它的典型实现就是线程池,也体现了经典设计模式中的享元模式。
例如,海底捞的服务员(线程),轮流处理每位客人的点餐(任务),如果为每位客人都配一名专属的服务员,那么成本就太高了(对比另一种多线程设计模式:Thread-Per-Message)。
注意,不同任务类型应该使用不同的线程池,这样能够避免饥饿,并能提升效率。
例如,如果一个餐馆的工人既要招呼客人(任务类型A),又要到后厨做菜(任务类型B)显然效率不咋地,分成服务员(线程池A)与厨师(线程池B)更为合理,当然你能想到更细致的分工。
饥饿
固定大小线程池会有饥饿现象
- 两个工人是同一个线程池中的两个线程
- 他们要做的事情是:为客人点餐和到后厨做菜,这是两个阶段的工作
- 客人点餐:必须先点完餐,等菜做好,上菜,在此期间处理点餐的工人必须等待
- 后厨做菜:没啥说的,做就是了
- 比如工人A 处理了点餐任务,接下来它要等着 工人B 把菜做好,然后上菜,他俩也配合的蛮好
- 但现在同时来了两个客人,这个时候工人A 和工人B 都去处理点餐了,这时没人做饭了,饥饿
public class TestDeadLock {
static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
static Random RANDOM = new Random();
static String cooking() {
return MENU.get(RANDOM.nextInt(MENU.size()));
}
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(2);
executorService.execute(() -> {
log.debug("处理点餐...");
Future<String> f = executorService.submit(() -> {
log.debug("做菜");
return cooking();
});
try {
log.debug("上菜: {}", f.get());
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
});
/*executorService.execute(() -> {
log.debug("处理点餐...");
Future<String> f = executorService.submit(() -> {
log.debug("做菜");
return cooking();
});
try {
log.debug("上菜: {}", f.get());
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
});*/
}
}
输出
17:21:27.883 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:21:27.891 c.TestDeadLock [pool-1-thread-2] - 做菜
17:21:27.891 c.TestDeadLock [pool-1-thread-1] - 上菜: 烤鸡翅
当注释取消后,可能的输出
17:08:41.339 c.TestDeadLock [pool-1-thread-2] - 处理点餐...
17:08:41.339 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
此时造成了饥饿现象,通过 JConsole 未检测到死锁。
怎么解决目前的饥饿现象呢?
可以增加线程池的大小,不过不是根本解决方案,还是前面提到的,不同的任务类型,采用不同的线程池,例如:
public class TestDeadLock {
static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
static Random RANDOM = new Random();
static String cooking() {
return MENU.get(RANDOM.nextInt(MENU.size()));
}
public static void main(String[] args) {
ExecutorService waiterPool = Executors.newFixedThreadPool(1);
ExecutorService cookPool = Executors.newFixedThreadPool(1);
waiterPool.execute(() -> {
log.debug("处理点餐...");
Future<String> f = cookPool.submit(() -> {
log.debug("做菜");
return cooking();
});
try {
log.debug("上菜: {}", f.get());
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
});
waiterPool.execute(() -> {
log.debug("处理点餐...");
Future<String> f = cookPool.submit(() -> {
log.debug("做菜");
return cooking();
});
try {
log.debug("上菜: {}", f.get());
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
});
}
}
输出
17:25:14.626 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.630 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.631 c.TestDeadLock [pool-1-thread-1] - 上菜: 地三鲜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.632 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 上菜: 辣子鸡丁
创建多少线程池合适
- 过小会导致程序不能充分地利用系统资源、容易导致饥饿
- 过大会导致更多的线程上下文切换,占用更多内存
CPU 密集型运算
- 通常采用
cpu 核数 + 1
能够实现最优的 CPU 利用率,+1 是保证当线程由于页缺失故障(操作系统)或其它原因导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费
I/O 密集型运算
- CPU 不总是处于繁忙状态,例如,当你执行业务计算时,这时候会使用 CPU 资源,但当你执行 I/O 操作时、远程 RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,你可以利用多线程提高它的利用率。
- 经验公式如下
线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间
- 例如 4 核 CPU 计算时间是 50% ,其它等待时间是 50%,期望 cpu 被 100% 利用,套用公式
4 * 100% * 100% / 50% = 8
- 例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式
4 * 100% * 100% / 10% = 40
自定义线程池
在上方已实现。
8) 任务调度线程池
在『任务调度线程池』功能加入之前,可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个任务的延迟或异常都将会影响到之后的任务。
public static void main(String[] args) {
Timer timer = new Timer();
TimerTask task1 = new TimerTask() {
@Override
public void run() {
log.debug("task 1");
sleep(2);
}
};
TimerTask task2 = new TimerTask() {
@Override
public void run() {
log.debug("task 2");
}
};
// 使用 timer 添加两个任务,希望它们都在 1s 后执行
// 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行
timer.schedule(task1, 1000);
timer.schedule(task2, 1000);
}
输出
20:46:09.444 c.TestTimer [main] - start...
20:46:10.447 c.TestTimer [Timer-0] - task 1
20:46:12.448 c.TestTimer [Timer-0] - task 2
使用 ScheduledExecutorService 改写:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2); // 如果线程池大小设置为 1 两个线程还是会串行执行
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {
System.out.println("任务1,执行时间:" + new Date());
//int i = 1 / 0; // 即使有异常 也不影响第二个线程的执行
try { Thread.sleep(2000); } catch (InterruptedException e) { }
}, 1000, TimeUnit.MILLISECONDS); // 参数:任务对象,延时时间,时间单位
executor.schedule(() -> {
System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);
输出
任务1,执行时间:Thu Jan 03 12:45:17 CST 2019
任务2,执行时间:Thu Jan 03 12:45:17 CST 2019
scheduleAtFixedRate(定时执行)例子:
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
log.debug("running...");
}, 1, 1, TimeUnit.SECONDS); // 参数:任务对象,延时时间,执行的间隔时间,时间单位
输出
21:45:43.167 c.TestTimer [main] - start...
21:45:44.215 c.TestTimer [pool-1-thread-1] - running...
21:45:45.215 c.TestTimer [pool-1-thread-1] - running...
21:45:46.215 c.TestTimer [pool-1-thread-1] - running...
21:45:47.215 c.TestTimer [pool-1-thread-1] - running...
scheduleAtFixedRate 例子(任务执行时间超过了间隔时间):
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
log.debug("running...");
sleep(2);
}, 1, 1, TimeUnit.SECONDS);
输出分析:一开始,延时 1s,接下来,由于任务执行时间 > 间隔时间,间隔被『撑』到了 2s:
21:44:30.311 c.TestTimer [main] - start...
21:44:31.360 c.TestTimer [pool-1-thread-1] - running...
21:44:33.361 c.TestTimer [pool-1-thread-1] - running...
21:44:35.362 c.TestTimer [pool-1-thread-1] - running...
21:44:37.362 c.TestTimer [pool-1-thread-1] - running...
scheduleWithFixedDelay(真正的间隔时间)例子:
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleWithFixedDelay(()-> {
log.debug("running...");
sleep(2);
}, 1, 1, TimeUnit.SECONDS); // 参数:任务对象,延时时间,任务与任务之间真正的间隔时间,时间单位
输出分析:一开始,延时 1s,scheduleWithFixedDelay 的间隔是 上一个任务结束 <-> 延时 <-> 下一个任务开始 所以间隔都是 3s:
21:40:55.078 c.TestTimer [main] - start...
21:40:56.140 c.TestTimer [pool-1-thread-1] - running...
21:40:59.143 c.TestTimer [pool-1-thread-1] - running...
21:41:02.145 c.TestTimer [pool-1-thread-1] - running...
21:41:05.147 c.TestTimer [pool-1-thread-1] - running...
评价
整个线程池表现为:线程数固定,任务数多于线程数时,会放入无界队列排队。
任务执行完毕,这些线程也不会被释放。用来执行延迟或反复执行的任务。
9) 正确处理执行任务异常
-
方法1:主动捉异常
ExecutorService pool = Executors.newFixedThreadPool(1); pool.submit(() -> { try { log.debug("task1"); int i = 1 / 0; } catch (Exception e) { log.error("error:", e); } });
输出
21:59:04.558 c.TestTimer [pool-1-thread-1] - task1 21:59:04.562 c.TestTimer [pool-1-thread-1] - error: java.lang.ArithmeticException: / by zero at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
-
方法2:使用 Future
ExecutorService pool = Executors.newFixedThreadPool(1); Future<Boolean> f = pool.submit(() -> { log.debug("task1"); int i = 1 / 0; return true; }); log.debug("result:{}", f.get());
输出
21:54:58.208 c.TestTimer [pool-1-thread-1] - task1 Exception in thread "main" java.util.concurrent.ExecutionException: java.lang.ArithmeticException: / by zero at java.util.concurrent.FutureTask.report(FutureTask.java:122) at java.util.concurrent.FutureTask.get(FutureTask.java:192) at cn.itcast.n8.TestTimer.main(TestTimer.java:31) Caused by: java.lang.ArithmeticException: / by zero at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
定时任务应用
如何让每周四 18:00:00 定时执行任务?
// 获得当前时间
LocalDateTime now = LocalDateTime.now();
// 获取本周四 18:00:00.000
LocalDateTime thursday =
now.with(DayOfWeek.THURSDAY).withHour(18).withMinute(0).withSecond(0).withNano(0);
// 如果当前时间已经超过 本周四 18:00:00.000, 那么找下周四 18:00:00.000
if (now.compareTo(thursday) >= 0) {
thursday = thursday.plusWeeks(1);
}
// 计算时间差,即延时执行时间
long initialDelay = Duration.between(now, thursday).toMillis();
// 计算间隔时间,即 1 周的毫秒值
long oneWeek = 7 * 24 * 3600 * 1000;
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
System.out.println("开始时间:" + new Date());
executor.scheduleAtFixedRate(() -> {
System.out.println("执行时间:" + new Date());
}, initialDelay, oneWeek, TimeUnit.MILLISECONDS);
10) Tomcat 线程池
Tomcat 在哪里用到了线程池呢
- LimitLatch 用来限流,可以控制最大连接个数,类似 J.U.C 中的 Semaphore 后面再讲
- Acceptor 只负责【接收新的 socket 连接】
- Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】
- 一旦可读,封装一个任务对象(socketProcessor),提交给 Executor 线程池处理
- Executor 线程池中的工作线程最终负责【处理请求】
Tomcat 线程池扩展了 ThreadPoolExecutor,行为稍有不同
- 如果总线程数达到 maximumPoolSize、
- 这时不会立刻抛 RejectedExecutionException 异常
- 而是再次尝试将任务放入队列,如果还失败,才抛出 RejectedExecutionException 异常
源码 tomcat-7.0.42
public void execute(Runnable command, long timeout, TimeUnit unit) {
submittedCount.incrementAndGet();
try {
super.execute(command);
} catch (RejectedExecutionException rx) {
if (super.getQueue() instanceof TaskQueue) {
final TaskQueue queue = (TaskQueue)super.getQueue();
try {
if (!queue.force(command, timeout, unit)) {
submittedCount.decrementAndGet();
throw new RejectedExecutionException("Queue capacity is full.");
}
} catch (InterruptedException x) {
submittedCount.decrementAndGet();
Thread.interrupted();
throw new RejectedExecutionException(x);
}
} else {
submittedCount.decrementAndGet();
throw rx;
}
}
}
TaskQueue.java
public boolean force(Runnable o, long timeout, TimeUnit unit) throws InterruptedException {
if ( parent.isShutdown() )
throw new RejectedExecutionException(
"Executor not running, can't force a command into the queue"
);
return super.offer(o,timeout,unit); //forces the item onto the queue, to be used if the task
is rejected
}
- Connector 配置
配置项 | 默认值 | 说明 |
---|---|---|
acceptorThreadCount | 1 | acceptor 线程数量(建立连接) |
pollerThreadCount | 1 | poller 线程数量(多路复用监测 channel) |
minSpareThreads | 10 | 核心线程数,即 corePoolSize |
maxThreads | 200 | 最大线程数,即 maximumPoolSize |
executor | - | Executor 名称,用来引用下面的 Executor |
- Executor 线程配置
配置项 | 默认值 | 说明 |
---|---|---|
threadPriority | 5 | 线程优先级 |
daemon | true | 是否守护线程 |
minSpareThreads | 25 | 核心线程数,即 corePoolSize |
maxThreads | 200 | 最大线程数,即 maximumPoolSize |
maxIdleTime | 60000 | 线程生存时间,单位是毫秒,默认值即 1 分钟 |
maxQueueSize | Integer.MAX_VALUE | 队列长度 |
prestartminSpareThreads | false | 核心线程是否在服务器启动时启动 |
本文参考:黑马程序员深入学习Java并发编程,JUC并发编程全套教程