【计算机网络】HTTPS 协议原理

news2024/11/15 14:06:36

https

  • 一、HTTPS 是什么
  • 二、加密
    • 1. 加密概念
    • 2. 加密的原因
    • 3. 常见的加密方式
      • (1)对称加密
      • (2)非对称加密
  • 三、数据摘要(数据指纹)
  • 四、HTTPS 的工作原理探究
    • 1. 只使用对称加密
    • 2. 只使用非对称加密
    • 3. 双方都使用非对称加密
    • 4. 非对称加密 + 对称加密
    • 中间人攻击
    • CA认证
    • 5. 非对称加密 + 对称加密 + 证书认证

一、HTTPS 是什么

HTTP 协议内容都是按照文本的方式明文传输的,这就导致在传输过程中出现一些被篡改的情况。HTTPS 也是一个应用层协议,是在 HTTP 协议的基础上引入了一个加密层。

在这里插入图片描述

二、加密

1. 加密概念

加密就是把明文 (要传输的信息)进行一系列变换,生成密文。

解密就是把密文再进行一系列变换,还原成明文。

在这个加密和解密的过程中,往往需要⼀个或者多个中间的数据,辅助进行这个过程,这样的数据称为密钥

例如我们客户端需要传输一个数字 5 给服务端,假设加密的方法为 5^2,于是 5 就称为明文,2 称为密钥;生成新的数字 77 就称为密文。当密文到了服务端进行解密,再异或密钥即可得到明文。

2. 加密的原因

当我们下载一个软件时,在客户端和服务器之间还有一种角色,叫做运营商,所以我们的所有请求,在发给服务器之前,都要先经过运营商的,然后再由运营商转发到服务端。所以我们在发起下载请求时,运营商正常转发给服务端,但是服务端响应下载链接时,运营商却可以将该响应的下载链接替换掉,导致我们下载的软件不是我们想要的!

由于我们通过网络传输的任何的数据包都会经过运营商的网络设备(路由器, 交换机等),那么运营商的网络设备就可以解析出你传输的数据内容,并进行篡改。点击 “下载按钮”,其实就是在给服务器发送了一个 HTTP 请求,获取到的 HTTP 响应其实就包含了该 APP 的下载链接。运营商劫持之后,就发现这个请求是要下载某个 APP,那么就自动的把交给用户的响应给篡改成另外一个软件的下载地址了。

在这里插入图片描述

所以,因为 http 的内容是明文传输的,明文数据会经过路由器、wifi热点、通信服务运营商、代理服务器等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传输的信息且不被双方察觉,这就是中间人攻击 ,所以我们才需要对信息进行加密。另外,不止运营商可以劫持,其他的黑客也可以用类似的手段进行劫持,来窃取用户隐私信息,或者篡改内容!

所以在互联网上,明文传输是比较危险的事情!HTTPS 就是在 HTTP 的基础上进行了加密,进⼀步的来保证用户的信息安全!

3. 常见的加密方式

(1)对称加密

采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密,特征:加密和解密所用的密钥是相同的。也就是我们上面举的异或的例子。

  • 特点:算法公开、计算量小、加密速度快、加密效率高

对称加密其实就是通过同一个 “密钥”,把明文加密成密文,并且也能把密文解密成明文。

(2)非对称加密

需要两个密钥来进行加密和解密,这两个密钥是公开密钥(public key,简称公钥)和私有密钥(private key,简称私钥)。

  • 特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。

非对称加密要用到两个密钥,一个叫做 “公钥”,⼀个叫做 “私钥”

公钥和私钥是配对的,最大的缺点就是运算速度非常慢,比对称加密要慢很多。其中:

  • 通过公钥对明文加密,变成密文
  • 通过私钥对密文解密,变成明文

也可以反着用:

  • 通过私钥对明文加密,变成密文
  • 通过公钥对密文解密,变成明文

也就是说,在一组公钥和私钥中,如果我们用了私钥加密,那么只要拥有公钥的人都可以解密;反过来,如果用了公钥加密,那么只能由拥有私钥的人来解密。

三、数据摘要(数据指纹)

数字指纹(数据摘要),其基本原理是利用单向散列函数(Hash函数)对信息进行运算,生成一串固定长度的数字摘要。数字指纹并不是⼀种加密机制,但可以用来判断数据有没有被篡改。

四、HTTPS 的工作原理探究

既然要保证数据安全,就需要进行 “加密”。网络传输中不再直接传输明文了,而是加密之后的 “密文”。加密的方式有很多,但是整体可以分成两大类:对称加密非对称加密

1. 只使用对称加密

如果通信双方都各自持有同⼀个密钥X,且没有别⼈知道,这两方的通信安全当然是可以被保证的(除非密钥被破解)

在这里插入图片描述

引入对称加密之后,即使数据被截获,由于黑客不知道密钥是啥,因此就无法进行解密, 也就不知道请求的真实内容是什么了。

但事情没这么简单,服务器同一时刻其实是给很多客户端提供服务的。这么多客户端,每个人用的秘钥都必须是不同的(如果是相同那密钥就太容易扩散了, 黑客就也能拿到了)。因此服务器就需要维护每个客户端和每个密钥之间的关联关系,这也是个很麻烦的事情。

比较较理想的做法,就是能在客户端和服务器建立连接的时候,双方协商确定这次的密钥是什么。但是如果直接把密钥明文传输,那么黑客也就能获得密钥了!此时后续的加密操作就形同虚设了,因此密钥的传输也必须加密传输!

2. 只使用非对称加密

鉴于非对称加密的机制,如果服务器先把公钥以明文方式传输给浏览器,之后浏览器向服务器传数据前都先用这个公钥加密好再传,从客户端到服务器信道似乎是安全的(有安全问题),因为只有服务器有相应的私钥能解开公钥加密的数据。

但是服务器到浏览器的这条路怎么保障安全?如果服务器用它的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始通过明文传输给浏览器的,若这个公钥被中间人劫持到了,那它也能用该公钥解密服务器传来的信息了。

3. 双方都使用非对称加密

服务端拥有公钥S与对应的私钥S’,客户端拥有公钥C与对应的私钥C’。客户和服务端交换公钥,客户端给服务端发信息:先用S对数据加密,再发送,只能由服务器解密,因为只有服务器有私钥S’;服务端给客户端发信息:先用C对数据加密,在发送,只能由客户端解密,因为只有客户端有私钥C’。但是这样效率太低,而且依然还有安全问题!这个问题我们后面再说。如下图:

在这里插入图片描述

4. 非对称加密 + 对称加密

服务端具有非对称公钥S私钥S’,客户端发起 https 请求,获取服务端公钥S,客户端在本地生成对称密钥C, 通过公钥S加密,发送给服务器。由于中间的网络设备没有私钥,即使截获了数据,也无法还原出内部的原文,也就无法获取到对称密钥。服务器通过私钥S’解密,还原出客户端发送的对称密钥C,并且使用这个对称密钥加密给客户端返回的响应数据。后续客户端和服务器的通信都只用对称加密即可。由于该密钥只有客户端和服务器两个主机知道,其他主机/设备不知道密钥即使截获数据也没有意义。如下图:

在这里插入图片描述

虽然上面已经比较接近答案了,但是依旧有安全问题。方案 2,方案 3,方案 4 都存在一个问题,如果最开始,中间人就已经开始攻击了呢?

中间人攻击

中间人攻击,Man-in-the-MiddleAttack,简称 “MITM攻击”。确实,在⽅案2/3/4中,客户端获取到公钥S之后,对客户端形成的对称秘钥C用服务端给客户端的公钥S进行加密,中间人即使窃取到了数据,此时中间人确实无法解出客户端形成的密钥C,因为只有服务器有私钥S’

但是中间人的攻击,如果在最开始握手协商的时候就进行了,那就不一定了,假设 hacker 已经成功成为中间人:

  • 服务器具有非对称加密算法的公钥S私钥S’

  • 中间人具有非对称加密算法的公钥M私钥M’

  • 客户端向服务器发起请求,服务器明文传送公钥S给客户端;

  • 此时中间人劫持数据报报文,提取公钥S并保存好,然后将被劫持报⽂中的公钥S替换成为自己的公钥M,并将伪造报文发给客户端;

在这里插入图片描述

  • 客户端收到报文,提取公钥M(自己当然不知道公钥被更换过了),自己形成对称秘钥C,用公钥M加密C,形成报文发送给服务器;

  • 中间人劫持后,直接用自己的私钥M’进行解密,得到通信秘钥C,再用曾经保存的服务端公钥S加密后,将报文推送给服务器;

  • 服务器拿到报文,用自己的私钥S’解密,得到通信秘钥C

  • 双方开始采用C进行对称加密,进行通信。但是⼀切都在中间人的掌握中,劫持数据,进⾏窃听甚至修改,都是可以的;

在这里插入图片描述

上面的攻击方案,同样适用于方案2,方案3;问题本质出在哪里了呢?客户端无法确定收到的含有公钥的数据报文,就是目标服务器发送过来的!

CA认证

为了解决上面的问题,服务端在使用 HTTPS 前,需要向CA机构申领⼀份数字证书,数字证书里含有证书申请者信息、公钥信息等。服务器把证书传输给浏览器,浏览器从证书里获取公钥就行了,证书就如⾝份证,证明服务端公钥的权威性。

在这里插入图片描述

这个证书可以理解成是⼀个结构化的字符串,里面包含了以下信息:

  • 证书发布机构
  • 证书有效期
  • 公钥
  • 证书所有者
  • 签名

需要注意的是:申请证书的时候,需要在特定平台生成查,会同时生成一对密钥对,即公钥和私钥。这对密钥对就是用来在网络通信中进行明文加密的。

其中公钥会随着CSR文件,⼀起发给CA进行权威认证,私钥服务端自己保留,用来后续进行通信(其实主要就是用来交换对称秘钥)。

理解数据签名

那么客户端该如何验证证书是合法的呢?在服务端给我们返回证书的时候,中间人也可以篡改证书中的内容呀。

首先我们先理解一下签名的过程,服务端首先将用户的请求,即提交上来的数据打包成 .csr 文件,并附上自己形成的公钥等信息向 CA机构 申请认证,这个认证过程如下:

在这里插入图片描述

首先将提交上来的数据通过散列函数形成数据摘要,然后 CA机构 使用自己的私钥 CA’ 进行加密,该数据摘要使用私钥 CA’ 加密后称为签名,签名和数据加在一起就称为证书!该证书就返回给服务端,然后服务端就把该证书返回给客户端!

那么当服务端给客户端返回证书的时候,中间人也可以对证书的内容篡改呀,怎么保证客户端收到的证书就是服务端发送过来的而没有被篡改过呢?这时候客户端就需要将该证书进行拆分,将明文部分和签名进行拆分。先对明文部分使用同样的散列函数 md5 形成数据摘要;我们知道,签名是经过数据摘要和 CA机构 的私钥 CA‘ 加密过的,那么 CA机构 的公钥在哪呢?CA机构 会公开自己形成证书签名时所用的公钥!怎么公开呢?客户端当中会内置很多权威 CA机构 的公钥!所以客户端就可以使用 CA机构 在自己内置的公钥 CA 对该签名进行解密,得到加密前的数据摘要!然后将证书中的明文部分和数据摘要进行对比就能确保该证书的权威性!如下图:

在这里插入图片描述

5. 非对称加密 + 对称加密 + 证书认证

所以正确的方案应该是 非对称加密 + 对称加密 + 证书认证,如下图:

在这里插入图片描述

如果有中间人对该证书中的公钥进行的更换,那么也就是修改了证书的明文部分,那么当客户端使用 CA机构 的公钥解签名的时候,得到的数据摘要和明文部分不匹配,那么就会认证失败。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1487043.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot239华府便利店信息管理系统

华府便利店信息管理系统 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本华府便利店信息管理系统就是在这样的大环境下诞生,其可以帮助管理者在…

C语言冒泡排序(高级版)

目录: 冒泡排序的原理 主函数 "冒泡排序函数" 比较函数 交换函数 最终输出 完整代码 冒泡排序的原理: 冒泡排序的原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右…

Python实现BIAS工具判断信号:股票技术分析的工具系列(4)

Python实现BIAS工具判断信号:股票技术分析的工具系列(4) 介绍算法解释 代码rolling函数介绍完整代码data代码BIAS.py 介绍 在股票技术分析中,BIAS(乖离率)是一种常用的技术指标,用于判断股票价…

unity学习(45)——选择角色菜单——客户端处理服务器的数据

1.已知客户端ReceiveCallBack中已经收到来自服务器返回的数据包。 2.问题是客户端MessageManager中的Update并没有拆解该数据包 ,因该是因为脚本没有挂载。 挂在SelectMenu场景中的Camera上即可。 挂载后成功达到目地 其中Update中的List是一个起到全局效果的static…

C# 打包nuget包

类库等项目开发好之后打开csproj&#xff0c;添加如下代码 <PropertyGroup><!--<TargetFramework>netstandard2.0</TargetFramework>--><PackageId>Test01</PackageId><Version>1.0.0</Version><Authors>wjl</Autho…

Redis、Elasticsearch(ES)、RocketMQ和MYSql 持久化对比

在现代大数据和分布式系统中&#xff0c;数据持久化是一个至关重要的话题。本文将针对 Redis、Elasticsearch&#xff08;ES&#xff09;、 RocketMQ和MYSql 这四种常见的数据存储和消息队列系统进行持久化方面的对比分析&#xff0c;帮助读者更好地了解它们各自的特点和适用场…

ABAP - SALV 教程15 用户点击按钮交互功能

SALV增加了按钮&#xff0c;那么该怎么实现点击了按钮实现交互功能呢&#xff1f;可以通过注册事件并且在对应的method中写入相关逻辑&#xff0c;来实现点击按钮后的逻辑。通过自定义状态栏的方式添加按钮&#xff1a;http://t.csdnimg.cn/lMF16通过使用派生类的方式添加按钮&…

lv20 QT主窗口4

熟悉创建主窗口项目 1 QAction 2 主窗口 菜单栏&#xff1a;fileMenu menuBar()->addMenu(tr("&File")); 工具栏&#xff1a;fileToolBar addToolBar(tr("File")); 浮动窗&#xff1a;QDockWidget *dockWidget new QDockWidget(tr("Dock W…

SVN教程-SVN的基本使用

SVN&#xff08;Apache Subversion&#xff09;是一款强大的集中式版本控制系统&#xff0c;它在软件开发项目中扮演着至关重要的角色&#xff0c;用于有效地跟踪、记录和管理代码的演变过程。与分布式系统相比&#xff0c;SVN 的集中式架构使得团队能够更加协同地进行开发&…

在ubuntu上安装hadoop完分布式

准备工作 Xshell安装包 Xftp7安装包 虚拟机安装包 Ubuntu镜像源文件 Hadoop包 Java包 一、安装虚拟机 创建ubuntu系统 完成之后会弹出一个新的窗口 跑完之后会重启一下 按住首先用ctrlaltf3进入命令界面&#xff0c;输入root&#xff0c;密码登录管理员账号 按Esc 然后输入 …

详解算法的时间复杂度和空间复杂度!

目录 ​编辑 1. 算法效率 2. 时间复杂度 2.1 时间复杂度的概念 2.2 大O的表示渐进法 2.3 一个栗子 3. 空间复杂度 4. 常见复杂度对比 5. 完结散花 ​​​​​​​ 悟已往之不谏&#xff0c;知来者犹可追 创作不易&#xff0c;宝子们&#xff01;如果这篇文章对你们有…

算法44:动态规划专练(最长公共子串题)

之前写过一篇博客是关于最长公共子序列的博客算法27&#xff1a;最长公共子序列&#xff08;力扣1143题&#xff09;——样本模型&#xff08;4&#xff09;_样本模型无效的条件-CSDN博客 子序列是可以删除某些字符达到的。 比如&#xff1a;字符串1为 a1b2c3. 字符串2为 aqv…

【C语言】【洛谷】P1125笨小猴

一、个人解答 #include<stdio.h> #include<string.h>int prime(int num);int main() {char max a, min z;int maxn0, minn1000;char str[100];int num[26] { 0 };fgets(str, sizeof(str), stdin);str[strcspn(str, "\n")] \0;for (int i 0; str[i]…

错误: 找不到或无法加载主类 com.zql.springbootTest.SpringbootTestApplication

首先查看application.properties是否出现问题 然后可以尝试 maven install

巧用二进制实现俄罗斯方块小游戏

效果预览 思想 首先建立两个数组board、tetris用来存储当前已经堆积在棋盘的方块与正在下落的方块。 这两个是一维数组当需要在页面画棋盘时就对其每一项转成二进制&#xff08;看计算属性tetrisBoard&#xff09;&#xff0c;其中1&#xff08;红色&#xff09;0&#xff08;…

Flink:Temporal Table Function(时态表函数)和 Temporal Join

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

Qt 简约美观的加载动画 第九季

这次和大家分享6个非常清爽的加载动画. &#x1f60a; 效果如下 &#x1f60a; 一共三个文件 , 可以直接编译运行的呢 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *argv[]) …

Endnote x9 最快方法批量导入.enw格式文件

按照网上看到的一个方法直接选中所有enw批量拖拽到 All references 附件不行啊&#xff0c; 以为只能写bat脚本方式了 经过一番尝试&#xff0c;惊人的发现拖到下面这个符号的地方就行了&#xff01;&#xff01;&#xff01; 如果不成功的话&#xff0c;可能&#xff1a; 我…

WordPress免费的远程图片本地化下载插件nicen-localize-image

nicen-localize-image&#xff08;可在wordpress插件市场搜索下载&#xff09;&#xff0c;是一款用于本地化文章外部图片的插件&#xff0c;支持如下功能&#xff1a; 文章发布前通过编辑器插件本地化 文章手动发布时自动本地化 文章定时发布时自动本地化 针对已发布的文章…

BioTech - 药物晶型预测与剂型设计 概述

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/136441046 药物晶型预测与剂型设计是指利用计算机模拟和优化药物分子在固态形式下的结构、性质和稳定性&#xff0c;以及与制剂工艺和质…