计算机设计大赛 深度学习图像修复算法 - opencv python 机器视觉

news2024/9/24 15:22:28

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1483497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows安装部署node.js以及搭建运行第一个Vue项目

一、官网下载安装包 官网地址:https://nodejs.org/zh-cn/download/ 二、安装程序 1、安装过程 如果有C/C编程的需求,勾选一下下图所示的部分,没有的话除了选择一下node.js安装路径,直接一路next 2、测试安装是否成功 【winR】…

cv_bridge连接自定义版本的opencv

在ros noetic版本中,默认的cv_bridge依赖的opencv版本为4.2.0,若要升级opencv版本,则无法使用cv_bridge,所以需要重新自编译cv_bridge。 一. 编译cv_bridge 1.通过网站 https://github.com/ros-perception/vision_opencv/tree/n…

MYSQL的优化学习,从原理到索引,在到事务和锁机制,最后的主从复制、读写分离和分库分表

mysql的优化学习 为什么选择Mysql不选择其他的数据库?还有哪些,有什么区别? Mysql:开源免费版本可用,适用于中小型应用 Oracle:适用于大型企业级应用,复杂的业务场景和大量数据的处理&#xf…

Acwing 每日一题 空调 差分 贪心

👨‍🏫 空调 👨‍🏫 参考题解 import java.util.Scanner;public class Main {static int N (int) 1e5 10;static int[] a new int[N];static int n;public static void main(String[] args){Scanner sc new Scanner(System.…

智能家居控制系统(51单片机)

smart_home_control_system 51单片机课设,智能家居控制系统 使用及转载请标明出处(最好点个赞及star哈哈) Github地址,带有PPT及流程图 Gitee码云地址,带有PPT及流程图 ​ 以STC89C52为主控芯片,以矩阵键…

【OpenCV C++】Mat img.total() 和img.cols * img.rows 意思一样吗?二者完全相等吗?

文章目录 1 结论及区别2 Mat img的属性 介绍1 结论及区别 在大多数情况下,img.total() 和 img.cols * img.rows 是相等的,但并不总是完全相等的。下面是它们的含义和一些区别: 1.img.total() 表示图像中像素的总数,即图像的总像素数量。2.img.cols * img.rows 也表示图像中…

C++学习笔记:二叉搜索树

二叉搜索树 什么是二叉搜索树?搜索二叉树的操作查找插入删除 二叉搜索树的应用二叉搜索树的代码实现K模型:KV模型 二叉搜索树的性能怎么样? 什么是二叉搜索树? 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树…

【go语言开发】swagger安装和使用

本文主要介绍go-swagger的安装和使用,首先介绍如何安装swagger,测试是否成功;然后列出常用的注释和给出使用例子;最后生成接口文档,并在浏览器上测试 文章目录 安装注释说明常用注释参考例子 文档生成格式化文档生成do…

代码随想录算法训练营第二十八天|93.复原IP地址 、78.子集、90.子集II

文章目录 [1.复原 IP 地址](https://leetcode.cn/problems/restore-ip-addresses/description/)2.子集[3.子集 II](https://leetcode.cn/problems/subsets-ii/) 1.复原 IP 地址 切割问题可以使用回溯,本题分别两步,切割字符串和判断IP 切割逻辑如下&…

微信小程序 --- 分包加载

分包加载 1. 什么是分包加载 什么是分包加载 ❓ 小程序的代码通常是由许多页面、组件以及资源等组成,随着小程序功能的增加,代码量也会逐渐增加,体积过大就会导致用户打开速度变慢,影响用户的使用体验。 分包加载是一种小程序…

MATLAB图像噪声添加与滤波

在 MATLAB 中添加图像噪声和进行滤波通常使用以下函数: 添加噪声:可以使用imnoise函数向图像添加各种类型的噪声,如高斯噪声、椒盐噪声等。 滤波:可以使用各种滤波器对图像进行滤波处理,例如中值滤波、高斯滤波等。 …

(三)电机控制之方波驱动无刷直流电机(BLDC)与正弦波驱动无刷直流电机(PMSM)的详细对比

电流控制方式和波形: 方波驱动:在每个换相周期内,定子绕组中的电流被切换为高或低两个状态,形成矩形波。通常采用六步换向法,即每60度电角度换相一次,从而产生转矩。正弦波驱动:定子绕组中流过的…

Doris实战——拈花云科的数据中台实践

前言 拈花云科 NearFar X Lab 团队调研并引进 Doris 作为新架构下的数据仓库选型方案。本文主要介绍了拈花云科数据中台架构从 1.0 到 2.0 的演变过程,以及 Doris 在交付型项目和 SaaS 产品中的应用实践。 一、业务背景 拈花云科的服务对象主要是国内各个景区、景点…

安卓虚拟机ART和Dalvik

目录 一、JVM和Dalvik1.1 基于栈的虚拟机字节码指令执行过程 1.2 基于寄存器的虚拟机 二、ART与Dalvikdex2aotAndroid N的运作方式 三、总结 一、JVM和Dalvik Android应用程序运行在Dalvik/ART虚拟机,并且每一个应用程序对应有一个单独的Dalvik虚拟机实例。 Dalvik…

四、西瓜书——支持向量机

第六章 支持向量机 1.间隔与支持向量 支持向量机的原理是寻找与支持向量具有最大间隔的划分超平面。支持向量机具有一个重要性质: 训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关. 首先,超平面的方程为: 点到超平面的距离为&#xff…

爬取博客的图片并且将它存储到响应的目录

目录 前言 思想 注意 不多说解释了,贴代码吧 config.json Get_blog_img.py 把之前的写的代码也贴上 Get_blog_id.py 主函数 main.py 运行结果 前言 在上一篇博客中我们介绍了如何爬取博客链接 利用python爬取本站的所有博客链接-CSDN博客文章浏览阅读74…

CSS转换(2D)transform属性及animation动画

1、倾斜效果&#xff0c;旋转效果 <style type"text/css"> .transrorm_bar{ padding:150px; display: flex; align-items: center;} .transrorm_bar div{ width: 120px; height: 120px; background-color: #eee; margin: 10px; display: flex; align-items: c…

爬虫入门到精通_实战篇8(分析Ajax请求并抓取今日头条美食美图)_界面上抓取Ajax方式

1 目标 目标&#xff1a; 抓取今日头条美食美图&#xff0c;如下&#xff1a; 一些网页直接请求得到的HTML代码并没有在网页中看到的内容&#xff0c;因为一些信息是通过Ajax加载&#xff0c;并通过js渲染生成的&#xff0c;这时就需要通过分析网页的请求来获取想要爬取的内容…

关于高德地图及其APP获取地图数据的研究

刚过完春节没几天&#xff0c;有个客户提出要获取高德地图的数据。 我看了下&#xff0c;回复说&#xff1a;这不是很简单嘛&#xff0c;高德有公开的开放平台&#xff0c;有足够的API支持用户获取数据&#xff0c;开发自己基于高德数据库的应用。 客户回复说&#xff1a;他的要…

【前端素材】推荐优质现代医院办公后台管理系统网页XRay平台模板(附源码)

一、需求分析 在线后台管理系统是指供管理员或运营人员使用的Web应用程序&#xff0c;用于管理和监控网站、应用程序或系统的运行和数据。它通常包括一系列工具和功能&#xff0c;用于管理用户、内容、权限、数据等。下面是关于在线后台管理系统的详细分析&#xff1a; 1、功…