Spark Bloom Filter Join

news2025/1/11 23:56:21

1 综述

1.1 目的

  Bloom Filter Join,或者说Row-level Runtime Filtering(还额外有一条Semi-Join分支),是Spark 3.3对运行时过滤的一个最新补充
  之前运行时过滤主要有两个:动态分区裁剪DPP(开源实现)、动态文件裁剪DFP(Databricks实现),两者都能有效减少数据源层面的Scan IO
  Bloom Filter Join的主要优化点是在shuffle层,通过在join shuffle前对表进行过滤从而提高运行效率

1.2 场景

  • 普通的shuffle join
    在这里插入图片描述

  • Broadcast join并且子结构中存在shuffle
    在这里插入图片描述

1.3 基础过程

  将存在过滤条件的小表端称为Filter Creation Side,另一层称为Filter Application Side
  对于如下的SQL:SELECT * FROM R JOIN S ON R.r_sk = S.s_sk where S.x = 5
  首先Creation端进行bloomFilter创建,简单来说就是对小表创建一个bloomFilter的过滤数据集合

SELECT BloomFilterAggregate(XxHash64(S.s_sk), n_items, n_bits)
FROM S where S.x = 5

  之后Application端进行重写(实际是整个查询重写),就是把小表的bloomFilter数据集合拿来对大表的数据进行过滤
  根据上面的场景图看,其实小表Creation端在整个SQL树上并没有变化,只改变了大表端的树结构

SELECT *
FROM R JOIN S ON R.r_sk = S.s_sk
WHERE S.x=5 AND BloomFilterMightContain( 
(
  SELECT BloomFilterAggregate(XxHash64(S.s_sk), n_items, n_bits) bloom_filter
  		  FROM S where S.x = 5 ),     -- Bloom filter creation
	          XxHash64(R.r_sk))       -- Bloom filter application

1.4 触发条件

  设计文档中写的触发条件

  1. 小表在broadcast join当中(存疑)
  2. 小表有过滤器
  3. 小表是Scan (-> Project) -> Filter的建档形式,否则依赖流增加可能延长查询时间
  4. 小表是确定性的
  5. 大表端有shuffle,小表可以通过shuffl传送bloomFilter结果
  6. join的列上没有应用DPP

2 InjectRuntimeFilter

  InjectRuntimeFilter是Spark源码中对应的优化器类,只执行一次(FixedPoint(1)和Once的差异是Once强制幂等)

Batch("InjectRuntimeFilter", FixedPoint(1),
  InjectRuntimeFilter) :+

  apply中定义了规则的整体流程,前面是两个条件判断

//  相关子查询不支持,相关子查询的子查询结果依赖于主查询,不能应用
case s: Subquery if s.correlated => plan
//  相关的配置开关是否开启
case _ if !conf.runtimeFilterSemiJoinReductionEnabled &&
  !conf.runtimeFilterBloomFilterEnabled => plan
case _ =>
  //  应用优化规则,尝试注入运行时过滤器
  val newPlan = tryInjectRuntimeFilter(plan)
  //  semi join配置未开或者规则应用后无变化,不处理
  if (conf.runtimeFilterSemiJoinReductionEnabled && !plan.fastEquals(newPlan)) {
  //  子查询重写成semi/anti join
    RewritePredicateSubquery(newPlan)
  } else {
    newPlan
  }

  相关的配置为,默认bloomFilter开启了,Semi join关闭的

val RUNTIME_FILTER_SEMI_JOIN_REDUCTION_ENABLED =
  buildConf("spark.sql.optimizer.runtimeFilter.semiJoinReduction.enabled")
    .doc("When true and if one side of a shuffle join has a selective predicate, we attempt " +
      "to insert a semi join in the other side to reduce the amount of shuffle data.")
    .version("3.3.0")
    .booleanConf
    .createWithDefault(false)
    
val RUNTIME_BLOOM_FILTER_ENABLED =
  buildConf("spark.sql.optimizer.runtime.bloomFilter.enabled")
    .doc("When true and if one side of a shuffle join has a selective predicate, we attempt " +
      "to insert a bloom filter in the other side to reduce the amount of shuffle data.")
    .version("3.3.0")
    .booleanConf
    .createWithDefault(true)

2.1 tryInjectRuntimeFilter

  tryInjectRuntimeFilter使用核心的处理流程,尝试应用Runtime Filter,整体代码如下

private def tryInjectRuntimeFilter(plan: LogicalPlan): LogicalPlan = {
  var filterCounter = 0
  val numFilterThreshold = conf.getConf(SQLConf.RUNTIME_FILTER_NUMBER_THRESHOLD)
  plan transformUp {
    case join @ ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, _, _, left, right, hint) =>
      var newLeft = left
      var newRight = right
      (leftKeys, rightKeys).zipped.foreach((l, r) => {
        // Check if:
        // 1. There is already a DPP filter on the key
        // 2. There is already a runtime filter (Bloom filter or IN subquery) on the key
        // 3. The keys are simple cheap expressions
        if (filterCounter < numFilterThreshold &&
          !hasDynamicPruningSubquery(left, right, l, r) &&
          !hasRuntimeFilter(newLeft, newRight, l, r) &&
          isSimpleExpression(l) && isSimpleExpression(r)) {
          val oldLeft = newLeft
          val oldRight = newRight
          if (canPruneLeft(joinType) && filteringHasBenefit(left, right, l, hint)) {
            newLeft = injectFilter(l, newLeft, r, right)
          }
          // Did we actually inject on the left? If not, try on the right
          if (newLeft.fastEquals(oldLeft) && canPruneRight(joinType) &&
            filteringHasBenefit(right, left, r, hint)) {
            newRight = injectFilter(r, newRight, l, left)
          }
          if (!newLeft.fastEquals(oldLeft) || !newRight.fastEquals(oldRight)) {
            filterCounter = filterCounter + 1
          }
        }
      })
      join.withNewChildren(Seq(newLeft, newRight))
  }
}

  过程中有很多的条件判断,应用Runtime Filter的基本条件:

  1. 插入的Runtime Filter没超过阈值(默认10)
  2. 等值条件的Key上不能有DPP、Runtime Filter
  3. 等值条件的Key是一个简单表达式(即没有套上UDF等)

  之后根据条件,选择将Runtime Filter应用到左子树还是右子树,条件为

  1. Join类型支持下推(比如RightOuter只能用于左子树)
  2. Application端支持通过joins、aggregates、windows下推过滤条件
  3. Creation端有过滤条件
  4. 当前join是shuffle join或者是一个子结构中包含shuffle的broadcast join
  5. Application端的扫描数据大于阈值(默认10G)

  提到的两个阈值的配置项

val RUNTIME_FILTER_NUMBER_THRESHOLD =
  buildConf("spark.sql.optimizer.runtimeFilter.number.threshold")
    .doc("The total number of injected runtime filters (non-DPP) for a single " +
      "query. This is to prevent driver OOMs with too many Bloom filters.")
    .version("3.3.0")
    .intConf
    .checkValue(threshold => threshold >= 0, "The threshold should be >= 0")
    .createWithDefault(10)

val RUNTIME_BLOOM_FILTER_APPLICATION_SIDE_SCAN_SIZE_THRESHOLD =
  buildConf("spark.sql.optimizer.runtime.bloomFilter.applicationSideScanSizeThreshold")
    .doc("Byte size threshold of the Bloom filter application side plan's aggregated scan " +
      "size. Aggregated scan byte size of the Bloom filter application side needs to be over " +
      "this value to inject a bloom filter.")
    .version("3.3.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefaultString("10GB")

2.2 injectFilter

  injectFilter是核心进行Runtime Filter规则应用的地方,在此处,bloomFilter和Semi Join是互斥的,只能有一个执行

if (conf.runtimeFilterBloomFilterEnabled) {
  injectBloomFilter(
    filterApplicationSideExp,
    filterApplicationSidePlan,
    filterCreationSideExp,
    filterCreationSidePlan
  )
} else {
  injectInSubqueryFilter(
    filterApplicationSideExp,
    filterApplicationSidePlan,
    filterCreationSideExp,
    filterCreationSidePlan
  )

2.3 injectBloomFilter

2.3.1 执行条件

  首先进行一个判断,在Creation端的数据不能大于阈值(Creation端数据量大会导致bloomFilter的误判率高,最终过滤效果差)

// Skip if the filter creation side is too big
if (filterCreationSidePlan.stats.sizeInBytes > conf.runtimeFilterCreationSideThreshold) {
  return filterApplicationSidePlan
}

  阈值配置默认10M

val RUNTIME_BLOOM_FILTER_CREATION_SIDE_THRESHOLD =
  buildConf("spark.sql.optimizer.runtime.bloomFilter.creationSideThreshold")
    .doc("Size threshold of the bloom filter creation side plan. Estimated size needs to be " +
      "under this value to try to inject bloom filter.")
    .version("3.3.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefaultString("10MB")

  Creation端的数据是一个预估数据,是LogicalPlan中的属性LogicalPlanStats获取的,分是否开启CBO,具体获取方式待研究

def stats: Statistics = statsCache.getOrElse {
  if (conf.cboEnabled) {
    statsCache = Option(BasicStatsPlanVisitor.visit(self))
  } else {
    statsCache = Option(SizeInBytesOnlyStatsPlanVisitor.visit(self))
  }
  statsCache.get
}

2.3.2 创建Creation端的聚合

  就是创建一个bloomFilter的聚合函数BloomFilterAggregate,是AggregateFunction的子类,属于Expression。根据统计信息中是否存在行数,会传入不同的参数

val rowCount = filterCreationSidePlan.stats.rowCount
val bloomFilterAgg =
  if (rowCount.isDefined && rowCount.get.longValue > 0L) {
    new BloomFilterAggregate(new XxHash64(Seq(filterCreationSideExp)), rowCount.get.longValue)
  } else {
    new BloomFilterAggregate(new XxHash64(Seq(filterCreationSideExp)))
  }

2.3.3 创建Application端的过滤条件

  根据1.3中的描述,此处就是把上节中Creation端创建的bloomFilter过滤条件构建成Application端的条件
  Alias就是一个别名的效果;ColumnPruning就是进行列裁剪,后续不需要的列不读取;ConstantFolding就是进行常量折叠;ScalarSubquery是标量子查询,标量子查询的查询结果是一行一列的值(单一值)
  BloomFilterMightContain就是一个内部标量函数,检查数据是否由bloomFilter包含,继承自Predicate,返回boolean值

val alias = Alias(bloomFilterAgg.toAggregateExpression(), "bloomFilter")()
val aggregate =
  ConstantFolding(ColumnPruning(Aggregate(Nil, Seq(alias), filterCreationSidePlan)))
val bloomFilterSubquery = ScalarSubquery(aggregate, Nil)
val filter = BloomFilterMightContain(bloomFilterSubquery,
  new XxHash64(Seq(filterApplicationSideExp)))

  最终结果是在原Application端的计划树上加一个filter,如下就是最终的返回结果

Filter(filter, filterApplicationSidePlan)

2.4 injectInSubqueryFilter

  injectInSubqueryFilter整体流程与injectBloomFilter差不多,差异应该是在Application端生成的过滤条件变成in

val actualFilterKeyExpr = mayWrapWithHash(filterCreationSideExp)
val alias = Alias(actualFilterKeyExpr, actualFilterKeyExpr.toString)()
val aggregate =
  ColumnPruning(Aggregate(Seq(filterCreationSideExp), Seq(alias), filterCreationSidePlan))
if (!canBroadcastBySize(aggregate, conf)) {
  // Skip the InSubquery filter if the size of `aggregate` is beyond broadcast join threshold,
  // i.e., the semi-join will be a shuffled join, which is not worthwhile.
  return filterApplicationSidePlan
}
val filter = InSubquery(Seq(mayWrapWithHash(filterApplicationSideExp)),
  ListQuery(aggregate, childOutputs = aggregate.output))
Filter(filter, filterApplicationSidePlan)

  这里有一个小优化就是mayWrapWithHash,当数据类型的大小超过int时,就是把数据转为hash

// Wraps `expr` with a hash function if its byte size is larger than an integer.
private def mayWrapWithHash(expr: Expression): Expression = {
  if (expr.dataType.defaultSize > IntegerType.defaultSize) {
    new Murmur3Hash(Seq(expr))
  } else {
    expr
  }
}

3 BloomFilterAggregate

  类有三个核心参数:

  1. child:子表达式,就是InjectRuntimeFilter里传的XxHash64,目前看起来数据先经过XxHash64处理成long再放入BloomFilter
  2. estimatedNumItemsExpression:估计的数据量,如果InjectRuntimeFilter没拿到统计信息,就用配置的默认值
  3. numBitsExpression:要使用的bit数
case class BloomFilterAggregate(
    child: Expression,
    estimatedNumItemsExpression: Expression,
    numBitsExpression: Expression,

  estimatedNumItemsExpression和numBitsExpression对应的配置如下

val RUNTIME_BLOOM_FILTER_EXPECTED_NUM_ITEMS =
  buildConf("spark.sql.optimizer.runtime.bloomFilter.expectedNumItems")
    .doc("The default number of expected items for the runtime bloomfilter")
    .version("3.3.0")
    .longConf
    .createWithDefault(1000000L)
    
val RUNTIME_BLOOM_FILTER_NUM_BITS =
  buildConf("spark.sql.optimizer.runtime.bloomFilter.numBits")
    .doc("The default number of bits to use for the runtime bloom filter")
    .version("3.3.0")
    .longConf
    .createWithDefault(8388608L)

  BloomFilter用的是Spark自己实现的一个类BloomFilterImpl,BloomFilterAggregate的createAggregationBuffer接口中创建

override def createAggregationBuffer(): BloomFilter = {
  BloomFilter.create(estimatedNumItems, numBits)
}

  参数就是前面的estimatedNumItemsExpression和numBitsExpression,是懒加载的参数(应该在处理过程会被改变,所以实际跟前面的值之间还加了一层与默认值的比较赋值)

// Mark as lazy so that `estimatedNumItems` is not evaluated during tree transformation.
private lazy val estimatedNumItems: Long =
  Math.min(estimatedNumItemsExpression.eval().asInstanceOf[Number].longValue,
    SQLConf.get.getConf(RUNTIME_BLOOM_FILTER_MAX_NUM_ITEMS))

  处理数据的接口应该是update,把数据用XxHash64处理后加入BloomFilter

override def update(buffer: BloomFilter, inputRow: InternalRow): BloomFilter = {
  val value = child.eval(inputRow)
  // Ignore null values.
  if (value == null) {
    return buffer
  }
  buffer.putLong(value.asInstanceOf[Long])
  buffer
}

  对象BloomFilterAggregate有对应的序列化和反序列化接口

object BloomFilterAggregate {
  final def serialize(obj: BloomFilter): Array[Byte] = {
    // BloomFilterImpl.writeTo() writes 2 integers (version number and num hash functions), hence
    // the +8
    val size = (obj.bitSize() / 8) + 8
    require(size <= Integer.MAX_VALUE, s"actual number of bits is too large $size")
    val out = new ByteArrayOutputStream(size.intValue())
    obj.writeTo(out)
    out.close()
    out.toByteArray
  }

  final def deserialize(bytes: Array[Byte]): BloomFilter = {
    val in = new ByteArrayInputStream(bytes)
    val bloomFilter = BloomFilter.readFrom(in)
    in.close()
    bloomFilter
  }
}

4 BloomFilterMightContain

  有两个参数

  1. bloomFilterExpression:是上节BloomFilter的二进制数据
  2. valueExpression:应该跟上节的child一致,对输入数据做处理的表达式,XxHash64
case class BloomFilterMightContain(
    bloomFilterExpression: Expression,
    valueExpression: Expression)

  bloomFilter通过反序列化获取

// The bloom filter created from `bloomFilterExpression`.
@transient private lazy val bloomFilter = {
  val bytes = bloomFilterExpression.eval().asInstanceOf[Array[Byte]]
  if (bytes == null) null else deserialize(bytes)
}

  做数据判断的应该是eval,就是调用的BloomFilter的接口进行判断。eval应该就是Spark中Expression表达式的执行接口

override def eval(input: InternalRow): Any = {
  if (bloomFilter == null) {
    null
  } else {
    val value = valueExpression.eval(input)
    if (value == null) null else bloomFilter.mightContainLong(value.asInstanceOf[Long])
  }
}

  也有doGenCode接口用来生成代码

override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
  if (bloomFilter == null) {
    ev.copy(isNull = TrueLiteral, value = JavaCode.defaultLiteral(dataType))
  } else {
    val bf = ctx.addReferenceObj("bloomFilter", bloomFilter, classOf[BloomFilter].getName)
    val valueEval = valueExpression.genCode(ctx)
    ev.copy(code = code"""
    ${valueEval.code}
    boolean ${ev.isNull} = ${valueEval.isNull};
    ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
    if (!${ev.isNull}) {
      ${ev.value} = $bf.mightContainLong((Long)${valueEval.value});
    }""")
  }
}

5 计划变更

  取Spark单元测试的样例(InjectRuntimeFilterSuite):select * from bf1 join bf2 on bf1.c1 = bf2.c2 where bf2.a2 = 62

  • 规则前的plan
GlobalLimit 21
+- LocalLimit 21
   +- Project [cast(a1#38430 as string) AS a1#38468, cast(b1#38431 as string) AS b1#38469, cast(c1#38432 as string) AS c1#38470, cast(d1#38433 as string) AS d1#38471, cast(e1#38434 as string) AS e1#38472, cast(f1#38435 as string) AS f1#38473, cast(a2#38436 as string) AS a2#38474, cast(b2#38437 as string) AS b2#38475, cast(c2#38438 as string) AS c2#38476, cast(d2#38439 as string) AS d2#38477, cast(e2#38440 as string) AS e2#38478, cast(f2#38441 as string) AS f2#38479]
      +- Join Inner, (c1#38432 = c2#38438)
         :- Filter isnotnull(c1#38432)
         :  +- Relation spark_catalog.default.bf1[a1#38430,b1#38431,c1#38432,d1#38433,e1#38434,f1#38435] parquet
         +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
            +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet
  • 规则后的plan
GlobalLimit 21
+- LocalLimit 21
   +- Project [cast(a1#38430 as string) AS a1#38468, cast(b1#38431 as string) AS b1#38469, cast(c1#38432 as string) AS c1#38470, cast(d1#38433 as string) AS d1#38471, cast(e1#38434 as string) AS e1#38472, cast(f1#38435 as string) AS f1#38473, cast(a2#38436 as string) AS a2#38474, cast(b2#38437 as string) AS b2#38475, cast(c2#38438 as string) AS c2#38476, cast(d2#38439 as string) AS d2#38477, cast(e2#38440 as string) AS e2#38478, cast(f2#38441 as string) AS f2#38479]
      +- Join Inner, (c1#38432 = c2#38438)
         :- Filter might_contain(scalar-subquery#38494 [], xxhash64(c1#38432, 42))
         :  :  +- Aggregate [bloom_filter_agg(xxhash64(c2#38438, 42), 1000000, 8388608, 0, 0) AS bloomFilter#38493]
         :  :     +- Project [c2#38438]
         :  :        +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
         :  :           +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet
         :  +- Filter isnotnull(c1#38432)
         :     +- Relation spark_catalog.default.bf1[a1#38430,b1#38431,c1#38432,d1#38433,e1#38434,f1#38435] parquet
         +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
            +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1476954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

electron-release-server部署electron自动更新服务器记录

目录 一、前言 环境 二、步骤 1、下载上传electron-release-server到服务器 2、宝塔新建node项目网站 3、安装依赖 ①npm install ②安装并配置postgres数据库 ③修改项目配置文件 ④启动项目 ⑤修改postgres的认证方式 ⑥Cannot find where you keep your Bower p…

Unity(第十四部)光照

原始的有默认灯光、除了默认的你还可以创建 1、定向光源&#xff08;类似太阳、从无限远的地方射向地面的光&#xff0c;光源位置并不影响照射角度等&#xff0c;不同方向的旋转影响角度和明亮&#xff09; 1. 颜色&#xff1a;调整光的颜色2. 模式&#xff1a;混合是实时加烘…

【InternLM 实战营笔记】LMDeploy 的量化和部署

环境配置 vgpu-smi 查看显卡资源使用情况 新开一个终端执行下面的命令实时观察 GPU 资源的使用情况。 watch vgpu-smi复制环境到我们自己的 conda 环境 /root/share/install_conda_env_internlm_base.sh lmdeploy激活环境 conda activate lmdeploy安装依赖库 # 解决 Modu…

SpringBoot项目中如何结合Mybatis进行数据库查询

在Spring Boot项目中使用Mybatis进行数据库操作是一种常见的实现方式。下面我将展示如何在Spring Boot项目中整合Mybatis。这个示例将包括几个主要部分&#xff1a;项目依赖配置、配置文件、实体类、Mapper接口及其XML配置文件、服务类、以及一个简单的控制器。 1. 项目依赖配…

MyBatis-Plus 快速入门

介绍 j​​​​​MyBatis-Plus (opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window)的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 官网&#xff1a;MyBatis-Plus (baomidou.com) 1.…

sheng的学习笔记-卷积神经网络经典架构-LeNet-5、AlexNet、VGGNet-16

目录&#xff1a;目录 看本文章之前&#xff0c;需要学习卷积神经网络基础&#xff0c;可参考 sheng的学习笔记-卷积神经网络-CSDN博客 目录 LeNet-5 架构图 层级解析 1、输入层&#xff08;Input layer&#xff09; 2、卷积层C1&#xff08;Convolutional layer C1&…

2W字-35页PDF谈谈自己对QT某些知识点的理解

2W字-35页PDF谈谈自己对QT某些知识点的理解 前言与总结总体知识点的概况一些笔记的概况笔记阅读清单 前言与总结 最近&#xff0c;也在对自己以前做的项目做一个知识点的梳理&#xff0c;发现可能自己以前更多的是用某个控件&#xff0c;以及看官方手册&#xff0c;但是没有更…

卷积神经网络(CNN)原理与实现

卷积神经网络(CNN) 卷积神经网络原理卷积神经网络的数学推导卷积层反向传播算法数学推导卷积层实现代码 卷积神经网络(CNN) 卷积神经网络原理 卷积神经网络是一种用于图像、语音、自然语言等数据的深度学习模型&#xff0c;其核心思想是使用卷积操作提取输入数据的特征&…

tmux 工具常用命令

Tmux 是一个终端复用器&#xff08;terminal multiplexer&#xff09;&#xff0c;类似于 GNU screen 非常有用&#xff0c;属于常用的运维管理工具。 安装步骤 Ubuntu apt install tmux centos yum install tmux常用命令 以下所有快捷键&#xff0c;均是 ctrlb 按完之后先…

SpringBoot+Vue全栈开发-刘老师教编程(b站)(二)

创建SpringBoot项目 1.配置maven 出现bug java: 无法访问org.springframework.boot.SpringApplication 错误的类文件: /D:/maven/repository/org/springframework/boot/spring-boot/3.0.0/spring-boot-3.0.0.jar!/org/springframework/boot/SpringApplication.class 类…

react-router 源码之matchPath方法

1. 基础依赖path-to-regexp react-router提供了专门的路由匹配方法matchPath(位于packages/react-router/modules/matchPath.js)&#xff0c;该方法背后依赖的其实是path-to-regexp包。 path-to-regexp输入是路径字符串&#xff08;也就是Route中定义的path的值&#xff09;&…

AI:145-智能监控系统下的行人安全预警与法律合规分析

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带关键代码,详细讲解供大家学习,希望…

vscode 设置打开终端的默认工作目录/路径

vscode 设置打开终端的默认工作目录/路径** 文章目录 vscode 设置打开终端的默认工作目录/路径**打开vscode&#xff0c;打开设置UI 或是设置JSON文件&#xff0c;找到相关设置项方式1&#xff1a;通过打开settings.json的UI界面 设置:方式2&#xff1a;通过打开设置settings.j…

应急响应靶机训练-Web1【题解】

前言 接上文&#xff0c;应急响应靶机训练-Web1。 此文为应急响应靶机训练-Web1【题解】篇 解题过程 视频版&#xff1a; 另外&#xff0c;师傅们可以关注一下我们的bilibili&#xff0c;以后跟应急响应相关的靶机都会在bilibili发布一份视频 应急响应靶机训练-Web1【题解…

【MySQL】主从同步原理、分库分表

主从同步原理 1. 主从同步原理 MySQL 经常先把命令拷入硬盘的日志&#xff0c;再执行日志的命令&#xff0c;这样的好处&#xff1a; 日志的位置固定&#xff0c;拷入硬盘的开销不大&#xff1b;将命令先准备好&#xff0c;而不是边读边执行&#xff0c;性能更好&#xff0c;…

TCGA临床及肿瘤信息解读

TCGA临床信息各英文列解读 地址&#xff1a;https://docs.gdc.cancer.gov/Data_Dictionary/viewer/#?viewtable-entity-list&anchorclinical 一些用药 Cisplatin&#xff1a;顺铂&#xff0c;顺铂的作用机制主要通过与DNA结合&#xff0c;形成DNA-顺铂加合物&#xff0…

练习 2 Web [ACTF2020 新生赛]BackupFile 1

[ACTF2020 新生赛]BackupFile 1 Web常规题目 首先尝试查找常见的前端页面index.php之类的&#xff0c;没找到 题目有个“BackupFile”——备份文件 尝试用工具遍历查找相关的文件 御剑没扫出来&#xff0c;搜索搭建好dirsearch后&#xff0c;扫出来的index.php.bak 扫描工…

【4.3计算机网络】网络规划与设计

目录 1.网络规划2.逻辑网络设计3.物理网络设计 1.网络规划 需求分析->通信规范分析->逻辑网络设计->物理网络设计->实施阶段 2.逻辑网络设计 3.物理网络设计 例题1&#xff1a; 解析&#xff1a;选A。 例题2&#xff1a; 解析&#xff1a;选A。 例题3. 解析&am…

2024年小程序云开发CMS内容管理无法使用,无法同步内容模型到云开发数据库的解决方案,回退老版本CMS内容管理的最新方法

一&#xff0c;问题描述 最近越来越多的同学找石头哥&#xff0c;说cms用不了&#xff0c;其实是小程序官方最近又搞大动作了&#xff0c;偷偷的升级的云开发cms&#xff08;内容管理&#xff09;以下都称cms&#xff0c;不升级不要紧&#xff0c;这一升级&#xff0c;就导致我…

uniapp:启动图 .9png 制作教程

1、工具安装&#xff1a;自行下载Android Studio 2、制作.9png 注意上图3条黑线的位置&#xff0c;意思是&#xff1a;标注黑线的位置可以进行缩放。 对其大多数启动图来说&#xff0c;标注以上3条黑线即可。