如何利用ChatGPT搞科研?论文检索、写作、基金润色、数据分析、科研绘图(全球地图、植被图、箱型图、雷达图、玫瑰图、气泡图、森林图等)

news2025/1/15 6:46:31

以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。本课程通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。

专题一、开启大模型

1 开启大模型

1) 大模型的发展历程与最新功能

2) 大模型的强大功能与应用场景

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

4) 如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2 提问框架(提示词、指令)

1) 专业大模型提示词,助你小白变专家

2) 超实用的通用提示词和提问框架

3) GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题三、基于ChatGPT大模型的论文助手

3 基于AI大模型的论文助手

案例3.1:大模型论文润色中英文指令大全

案例3.2:使用大模型进行论文润色

案例3.3:使用大模型对英文文献进行搜索

案例3.4:使用大模型对英文文献进行问答和辅助阅读

案例3.5:使用大模型提取英文文献关键信息

案例3.6:使用大模型对论文进行摘要重写

案例3.7:使用大模型取一个好的论文标题

案例3.8:使用大模型写论文框架和调整论文结构

案例3.9:使用大模型对论文进行翻译

案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见

案例3.11:使用大模型对论文进行降重

案例3.12:使用大模型查找研究热点

案例3.13:使用大模型对你的论文凝练成新闻和微信文案

案例3.14:使用大模型对拓展论文讨论

案例3.15:使用大模型辅助专著、教材、课件的撰写

专题四、基于ChatGPT大模型的数据清洗

3 基于ChatGPT的数据清洗

1) R语言和Python基础(勿需学会,能看懂即可)

2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例4.1:使用大模型指令随机生成数据

案例4.2:使用大模型指令读取数据

案例4.3:使用大模型指令进行数据清洗

案例4.4:使用大模型指令对农业气象数据进行预处理

案例4.5:使用大模型指令对生态数据进行预处理

专题五、基于ChatGPT大模型的统计分析

5 基于AI大模型的统计分析

1) 统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例5.2:使用大模型进行t检验、F检验和卡方检验

案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

专题六、基于ChatGPT的经典统计模型

6 基于AI大模型的经典统计模型构建

案例6.1:基于AI辅助构建的混合线性模型在生态学中应用

案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图

案例6.3:基于AI辅助的生态环境数据结构方程模型构建

案例6.4:基于AI辅助的贝叶斯优化及模型参数不确定性

专题七、基于ChatGPT大模型的机器学习

7 基于AI大模型的机器/深度学习

1) 机器/深度学习

2) AI大模型的底层逻辑和算法结构(GPT1-GPT4)

3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5) 深度学习算法(神经网络、激活函数、交叉熵、优化器)

6) 卷积神经网络、长短期记忆网络(LSTM)

案例7.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例7.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例7.3:使用大模型指令构建降维模型

案例7.4:使用大模型指令构建聚类模型

案例7.5:使用大模型指令构建深度学习模型,实现预测和解释

专题八、ChatGPT的二次开发

8 基于AI大模型的二次开发

案例8.1:基于API构建自己的本地大模型

案例8.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例8.3:ChatGPT Store构建方法

专题九、基于ChatGPT大模型的科研绘图

9 基于AI大模型的科研绘图

1) 使用大模型进行数据可视化

案例9.1:大模型科研绘图指定全集

案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例9.3:使用大模型指令对图形进行修改

专题十、基于ChatGPT大模型的GIS应用

10 基于AI大模型的GIS应用

1) R语言和Python空间数据处理主要方法

2) 基于AI大模型训练降尺度模型

3) 基于AI大模型处理矢量、栅格数据

4) 基于AI大模型处理多时相netCDF4数据

案例10.1:使用大模型绘制全球地图

案例10.2:使用大模型处理NASA气象多时相NC数据

案例10.3:使用大模型绘制全球植被类型分布图

案例10.4:使用大模型栅格数据并绘制全球植被生物量图

案例10.5:使用大模型处理遥感数据并进行时间序列分析

案例10.6:使用不同插值方法对气象数据进行插值

专题十一、基于ChatGPT大模型的项目基金助手

11 基于AI大模型的项目基金助手

1) 基金申请讲解

2) 基因申请助手

案例11.1:使用大模型进行项目选题和命题

案例11.2:使用大模型进行项目书写作和语言润色

案例11.3:使用大模型进行项目书概念图绘制

专题十二、基于大模型的AI绘图

12基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

1) AI画图指令套路和参数设定

案例12.1:使用大模型进行图像识别

案例12.2:使用大模型生成图像指令合集

案例12.3:使用大模型指令生成概念图

案例12.4:使用大模型指令生成地球氮循环概念图

案例12.5:使用大模型指令生成土壤概念图

案例12.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例12.7:使用大模型指令生成图片素材,从此不再缺图片素材

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680335&idx=3&sn=74a8b49e600e1ad7ca58743745d33dbb&chksm=fa775e72cd00d764129e7f02f2e73db90bdc397ffc62180777dcf696c1d8113daa7919446d02&token=318625319&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1476427.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【STM32】STM32学习笔记-WDG看门狗(46)

00. 目录 文章目录 00. 目录01. WDG简介02. IWDG概述03. IWDG框图04. IWDG键寄存器05. WWDG简介06. WWDG框图07. WWDG工作特性08. IWDG和WWDG对比09. 预留10. 附录 01. WDG简介 WDG(Watchdog)看门狗 看门狗可以监控程序的运行状态,当程序因为…

ubuntu20.04安装docker及运行

ubuntu20.04安装docker及运行 ubuntu环境版本 Ubuntu Focal 20.04 (LTS) 查看系统版本 rootubuntu20043:~# cat /proc/version Linux version 5.15.0-78-generic (builddlcy02-amd64-008) (gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0, GNU ld (GNU Binutils for Ubuntu) …

基于Eclipse+Tomcat+Mysql开发的网络考试系统的设计与实现

基于EclipseTomcatMysql开发的网络考试系统的设计与实现 项目介绍💁🏻 网络考试系统主要用于实现高校在线考试,基本功能包括:自动组卷、试卷发布、试卷批阅、试卷成绩统计等。本系统结构如下: (1&#xff0…

C++重点---STL简介

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、STL简介 STL(Standard Template Library)是C标准库中的一个重要组成部分,它提供了…

8 easy 14. 最长公共前缀

纵向扫描法: //编写一个函数来查找字符串数组中的最长公共前缀。 // // 如果不存在公共前缀,返回空字符串 ""。 // // // // 示例 1: // // //输入:strs ["flower","flow","flight"…

Keras 3.0发布:全面拥抱 PyTorch!

Keras 3.0 介绍 https://keras.io/keras_3/ Keras 3.0 升级是对 Keras 的全面重写,引入了一系列令人振奋的新特性,为深度学习领域带来了全新的可能性。 多框架支持 Keras 3.0 的最大亮点之一是支持多框架。Keras 3 实现了完整的 Keras API,…

面试笔记系列八之JVM基础知识点整理及常见面试题

类实例化加载顺序 加载:当程序访问某个类时,JVM会首先检查该类是否已经加载到内存中。如果尚未加载,则会进行加载操作。加载操作将类的字节码文件加载到内存,并为其创建一个Class对象。 连接(验证、准备、解析&#x…

Qt程序设计-指南针自定义控件实例

本文讲解Qt指南针自定义控件实例。 效果演示 创建指南针类 #ifndef COMPASS_H #define COMPASS_H#include <QWidget> #include <QWidget> #include <QTimer> #include <QPainter> #include <QPen> #include <QDebug> #include <QtMat…

【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 REMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了REMD&#xff08;Reservoir Enhanced Multi-scale Deep Learning&#xff09;算法、多尺度特征提取&#xff08;MFE&#xff09;、支持…

许多主要新闻媒体正屏蔽 OpenAI 爬虫

自OpenAI的内容生成式人工智能模型面世以来&#xff0c;大量互联网数据成为了不断训练和优化模型的“饵料”&#xff0c;但据路透社研究所的一项调查&#xff0c;有越来越多的新闻媒体已对OpenAI的数据爬取说“不”&#xff0c;在传统媒体领域&#xff0c;这一比例甚至超过了50…

数仓模型设计方法论

在当今大数据时代&#xff0c;数据已经成为企业最重要的资产之一。而数据仓库作为企业数据管理和分析的核心基础设施&#xff0c;其设计方法论对于企业的数据治理和决策分析至关重要。本文将探索数仓模型设计的方法论&#xff0c;帮助读者更好地理解和应用数仓模型设计。 一、…

仿牛客网项目---社区首页的开发实现

从今天开始我们来写一个新项目&#xff0c;这个项目是一个完整的校园论坛的项目。主要功能模块&#xff1a;用户登录注册&#xff0c;帖子发布和热帖排行&#xff0c;点赞关注&#xff0c;发送私信&#xff0c;消息通知&#xff0c;社区搜索等。这篇文章我们先试着写一下用户的…

EAP-TLS实验之Ubuntu20.04环境搭建配置(FreeRADIUS3.0)(四)

该篇主要介绍了利用配置ca.cnf、server.cnf、client.cnf在certs路径下生成证书文件&#xff08;非执行bootstrap脚本&#xff0c;网上也有很多直接通过openssl命令方式生成的文章&#xff09;&#xff0c;主要参考&#xff08;概括中心思想&#xff09;官方手册&#xff0c;以及…

2024年阿里云2核4G配置服务器测评_ECS和轻量性能测评

阿里云2核4G服务器多少钱一年&#xff1f;2核4G服务器1个月费用多少&#xff1f;2核4G服务器30元3个月、85元一年&#xff0c;轻量应用服务器2核4G4M带宽165元一年&#xff0c;企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

安卓之ContentProvider的应用场景以及优劣分析

摘要 本文旨在对Android开发中的ContentProvider进行深入探讨。ContentProvider是Android系统中四大组件之一&#xff0c;主要用于在不同的应用程序之间共享数据。本文首先对ContentProvider进行概述&#xff0c;然后分析其应用场景&#xff0c;接着对其优势和劣势进行分析&…

简单模板2(HTML)

紧接上回&#xff0c;简单模板2又来了&#xff0c;喜欢赶紧点个赞吧&#xff0c;希望大家喜欢&#xff01; 效果图&#xff1a; CODE&#xff1a; <!DOCTYPE html> <html> <head><title>我的第一个网页</title> </head> <body><…

微信小程序订阅消息前后端示例

微信小程序的订阅消息&#xff0c; 必须是由弹框&#xff0c;弹框&#xff0c;弹框来调起了&#xff0c;单纯的在页面上调用 wx.requestSubscribeMessage是没有效果的 小程序端的代码 <view class"sub" bindtap"dinyuxiaoxi">订阅消息</view>…

【深度学习】SDXL-Lightning 体验,gradio教程,SDXL-Lightning 论文

文章目录 资源SDXL-Lightning 论文 资源 SDXL-Lightning论文&#xff1a;https://arxiv.org/abs/2402.13929 gradio教程&#xff1a;https://blog.csdn.net/qq_21201267/article/details/131989242 SDXL-Lightning &#xff1a;https://huggingface.co/ByteDance/SDXL-Light…

SpringCloud Eureka(注册中心)

一、spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具&#xff0c;包括配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等。它运行环境简单&#xff0c;可以在开发人员的电脑上跑。另外说明spring cloud是基…

sql基本语法+实验实践

sql语法 注释&#xff1a; 单行 --注释内容# 注释内容多行 /* 注释内容 */数据定义语言DDL 查询所有数据库 show databases;注意是databases而不是database。 查询当前数据库 select database();创建数据库 create database [if not exists] 数据库名 [default charset 字符…