基于最小二乘正弦拟合算法的信号校正matlab仿真,校正幅度,频率以及时钟误差,输出SNDR,SFDR,ENOB指标

news2025/2/25 2:26:07

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 最小二乘正弦拟合

4.2 SNDR、SFDR 和 ENOB 计算

4.3 校正

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.......................................................................
% 计算估计的偏置、增益和时钟误差  
% 显示估计值的误差 
disp('O估计误差%');  
100*abs(o_-o)./o % 
  
disp('g估计误差%');  
100*abs(g_-g)./g %  
  
disp('r估计误差%');  
100*abs(r_-r)./r %  
  
% 使用估计结果对信号进行校正  
x1_0 = (x1-o_(1))/(1+g_(1));  
x2_0 = (x2-o_(2))/(1+g_(2));  
x3_0 = (x3-o_(3))/(1+g_(3));  
x4_0 = (x4-o_(4))/(1+g_(4));  
  
% 单独对时钟误差进行校正  
x1_ = x1_0.*cos(2*pi*fc*r_(1)/fs) - sqrt(1-x1_0.^2).*sin(2*pi*fc*r_(1)/fs);  
x2_ = x2_0.*cos(2*pi*fc*r_(2)/fs) - sqrt(1-x2_0.^2).*sin(2*pi*fc*r_(2)/fs);  
x3_ = x3_0.*cos(2*pi*fc*r_(3)/fs) - sqrt(1-x3_0.^2).*sin(2*pi*fc*r_(3)/fs);  
x4_ = x4_0.*cos(2*pi*fc*r_(4)/fs) - sqrt(1-x4_0.^2).*sin(2*pi*fc*r_(4)/fs);  
  
% 重新组合校正后的信号  
ymuxerr = zeros(size(y0)); % 注意:这里会出错,因为y0并未在代码中定义  
ymuxerr(1:M:end) = x1_;  
ymuxerr(2:M:end) = x2_;  
ymuxerr(3:M:end) = x3_;  
ymuxerr(4:M:end) = x4_;  
  
% 计算校正后信号的频谱  
YMUX0err = abs(fftshift(fft(ymuxerr)));  
N = length(Y0); % 注意:这里会出错,因为Y0并未在代码中定义,应该使用ymuxerr的长度  
Fs = [-N/2:N/2-1]/N*fs; % 生成频率轴  
  
% 绘制校正后的正弦信号及其频谱  
figure;  
subplot(211);  
plot(t,ymuxerr); % 绘制时间域信号  
xlim([0,0.001]); % 设置x轴范围  
title('校正后的正弦信号'); % 设置标题  
subplot(212);  
plot(Fs,YMUX0err); % 绘制频谱  
title('校正后的正弦信号频谱'); % 设置标题  
xlim([0,500*fc]); % 设置x轴范围
37_008m

4.算法理论概述

         在信号处理领域,正弦信号是一种常见且重要的信号形式。然而,在实际应用中,由于各种噪声和失真的影响,正弦信号的幅度、频率和相位可能会发生偏差。为了准确地恢复和分析这些信号,需要采用有效的校正算法。最小二乘正弦拟合算法是一种常用的方法,它可以通过最小化误差的平方和来估计正弦信号的参数。将详细介绍该算法的原理,并通过校正幅度、频率和时钟误差来评估信号的性能,输出信噪比与失真比(SNDR)、无杂散动态范围(SFDR)和有效位数(ENOB)等指标。

4.1 最小二乘正弦拟合

        假设我们有一个离散的时间序列数据 x[n],它是一个包含噪声的理想正弦波形。我们的目标是找到最接近实际数据的一个正弦函数:

解决这个优化问题可以获得最佳拟合的正弦波参数。

       频率 f的估计值可用于纠正实际信号的频率偏差。时钟误差通常是相对于理想采样间隔的相对偏差,可通过频率估计来间接反映并修正。

       通过拟合得到的幅度 A 可用于对原始信号进行增益调整,确保信号幅度达到期望水平。

4.2 SNDR、SFDR 和 ENOB 计算

        信噪比与噪声密度比(Signal-to-Noise and Distortion Ratio, SNDR) SNDR 表示信号功率与噪声及失真功率之比,定义为:

        无杂散动态范围(Spurious-Free Dynamic Range, SFDR) SFDR 是衡量系统能够同时处理大信号而保持小信号不失真的能力,通常定义为最大输出信号幅度与第二大非谐波分量幅度之间的分贝差。

       有效数位(Effective Number of Bits, ENOB) ENOB 描述了ADC或DAC系统的性能,它根据SNR(仅考虑噪声)转换成相当于理想ADC的位数。若已知SNDR,可以通过以下近似公式估算ENOB:

        对于基于最小二乘正弦拟合的信号校正,首先通过拟合获取纯净信号的参数,然后通过对噪声、失真项的分析,计算出SNDR和SFDR。ENOB则作为评估信号质量的关键指标,反映了经过校正后的信号接近理想量化过程的程度。

      总结来说,最小二乘正弦拟合是一种强大的工具,可以帮助我们在存在噪声和失真的情况下恢复信号的真实特性,进而评估和改进信号处理系统的整体性能。在实际应用中,这些步骤可能需要结合特定的信号处理技术如FFT分析和滤波器设计来进行更精确的测量和校准。

4.3 校正

       通过最小二乘正弦拟合算法得到正弦信号的参数估计值后,可以对信号的幅度、频率和时钟误差进行校正。

幅度校正:直接采用估计得到的幅度值 (A) 对原信号进行幅度校正。

频率校正:根据估计得到的频率值 (f),可以对原信号的采样率进行调整,以校正频率偏差。

时钟误差校正:时钟误差通常表现为采样时刻的偏差。如果知道精确的时钟误差值,可以对采样时刻进行插值或重采样来校正。但在实际应用中,时钟误差往往难以直接测量。一种可能的方法是通过与参考信号进行对比来估计时钟误差,并进行相应的校正。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1474679.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vscode 如何连接 WSL (不能通过 IP 地址连接)

来源:https://www.cnblogs.com/wxdblog/p/17234342.html vscode (remote-ssh) 连接 WSL 不能使用 IP地址 连接,需要安装 WSL 扩展才行

《TCP/IP详解 卷一》第9章 广播和本地组播

目录 9.1 引言 9.2 广播 9.2.1 使用广播地址 9.2.2 发送广播数据报 9.3 组播 9.3.1 将组播IP地址转换为组播MAC地址 9.3.2 例子 9.3.3 发送组播数据报 9.3.4 接收组播数据报 9.3.5 主机地址过滤 9.4 IGMP协议和MLD协议 9.4.1 组成员的IGMP和MLD处理 9.4.2 组播路由…

【kubernetes】关于k8s集群的声明式管理资源

目录 一、声明式管理方法 二、资源配置清单管理 1、导出资源配置清单 2、修改资源配置清单并应用 2.1离线修改 2.2在线修改 三、通过资源配置清单创建资源对象 获取K8S资源配置清单文件模板? 关于配置清单常见的字段 方案一:手写yaml配置文件 …

Apache Paimon 主键表解析

Primary Key Table-主键表 1.概述 主键表是创建表时的默认表类型,用户可以插入、更新或删除表中的记录; 主键由一组列组成,这些列包含每条记录的唯一值; Paimon通过对每个桶中的主键排序来强制数据有序,允许用户在…

【README 小技巧】 展示gitee中开源项目start

【README 小技巧】 展示gitee中开源项目start <a target"_blank" hrefhttps://gitee.com/wujiawei1207537021/wu-framework-parent><img srchttps://gitee.com/wujiawei1207537021/wu-framework-parent/badge/star.svg altGitee star/></a>

2024年腾讯云4核8G5M云服务器并发量支持多少人在线?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

小程序应用、页面、组件生命周期

引言 微信小程序生命周期是指在小程序运行过程中&#xff0c;不同阶段触发的一系列事件和函数。这一概念对于理解小程序的整体架构和开发流程非常重要。本文将介绍小程序生命周期的概念以及在不同阶段触发的关键事件&#xff0c;帮助开发者更好地理解和利用小程序的生命周期。 …

Github 2024-02-25开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-25统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目5Jupyter Notebook项目2TypeScript项目2非开发语言项目1HTML项目1C项目1Dart项目1 Python - 100天…

SSM SpringBoot vue物资管理系统

SSM SpringBoot vue物资管理系统 系统功能 登录注册 个人中心 财务管理 商品类别管理 供应商信息管理 商品信息管理 进货入库管理 销售出库管理 商品盘点管理 开发环境和技术 开发语言&#xff1a;Java 使用框架: SSM(Spring SpringMVC Mybaits)或SpringBoot Mybaits 前…

【学习总结】什么是弹性负载均衡? LB和ELB的区别

[Q&A] 什么是 LB (Load Balancer) 负载均衡器&#xff1a; 这是一个广泛的概念&#xff0c;泛指任何用于在网络流量进入时进行分配以实现服务器集群间负载均衡的设备或服务。传统的负载均衡器可以是硬件设备&#xff0c;也可以是软件解决方案&#xff0c;其基本目标是将客…

国创证券:机器人概念掀涨停潮 迈赫股份、丰立智能等多股涨停

机器人概念26日盘中走势活跃&#xff0c;到发稿&#xff0c;中亚股份、中威电子、迈赫股份、丰立智能、东杰智能等多股涨停&#xff0c;机器人、巨能股份、本川智能、江苏北人等涨超12%。 消息面上&#xff0c;人形机器人方面&#xff0c;据媒体报道&#xff0c;特斯拉近日通过…

【监督学习之支持向量机(SVM)】

曾梦想执剑走天涯&#xff0c;我是程序猿【AK】 目录 简述概要知识图谱基本原理支持向量线性SVM与非线性SVM优化问题软间隔与正则化SVM的应用实现 简述概要 了解监督学习-支持向量机&#xff08;SVM&#xff09; 知识图谱 支持向量机&#xff08;Support Vector Machine&…

【已解决】用ArcGIS处理过的数据在QGIS中打开发生偏移怎么办?| 数据在ArcGIS中打开位置正常,在QGIS中偏移

1. 问题描述 栅格或者矢量数据用ArcGIS打开时位置正确&#xff08;可以和其他数据对应上&#xff09;。但是用QGIS打开后发现位置不对 2. 问题的原因 因为该数据用了ArcGIS自定义的坐标系&#xff0c;QGIS不支持&#xff0c;识别有误。因此在数据QGIS中的坐标系参数有误&a…

基于FPGA的9/7整数小波变换和逆变换verilog实现,包含testbench

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 9/7整数小波变换原理 4.2 逆变换过程 5.算法完整程序工程 1.算法运行效果图预览 将测试结果导入到matlab显示 2.算法运行软件版本 vivado2019.2&#xff0c;matlab2022a 3.部分核心程…

深度学习 精选笔记(4)线性神经网络-交叉熵回归与Softmax 回归

学习参考&#xff1a; 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增)&#xff0c;以达到集多方教程的精华于一文的目的。 ③非常推荐上面&#xff08;学习参考&#x…

postman访问k8s api

第一种方式&#xff1a; kubectl -n kubesphere-system get sa kubesphere -oyaml apiVersion: v1 kind: ServiceAccount metadata:annotations:meta.helm.sh/release-name: ks-coremeta.helm.sh/release-namespace: kubesphere-systemcreationTimestamp: "2023-07-24T07…

影像仪激光扫描功能,无缝连接2D/3D混合测量

在现代工业生产领域&#xff0c;影像仪用于质量控制和产品检测&#xff0c;是一个不可或缺的工具。它通过高精度的成像和图像处理技术&#xff0c;可以及时发现产品的缺陷和异常&#xff0c;以保证产品质量的稳定性和一致性。 影像仪的重要性及其面临的挑战 在工业生产方面&a…

免杀实战-EDR对抗

文章目录 杀软分析BOF.NET 杀软分析 x64dgb简单调试发现该edr在r3环对ntdll.dll和kernel32.dll关键函数均存在hook&#xff0c;这里硬盘读取原来的dll进行重新加载&#xff0c;原理如图 loader // dllmain.cpp : 定义 DLL 应用程序的入口点。 #include "pch.h" #in…

矩阵的范数 matrix norm Frobenius norm 弗罗贝尼乌斯 范数

1&#xff0c;矩阵范数的定义 矩阵的范数&#xff0c;matrix norm即矩阵的模&#xff1b;它把一个矩阵空间变成为赋范线性空间&#xff1b; 从一个矩阵空间映射到非负实数的函数 满足以下条件&#xff1a; 1&#xff0c;严格的正定性。对于 , 则 ; and if , must ; 2&…

Element UI中 el-tree 组件 css 实现横向溢出滚动实现

限制 el-tree 的父容器宽度为 100px 之后 el-tree 组件内数据溢出后隐藏&#xff0c;不出现滚动条 、overflow 为 auto 也无效 overflow 无效是因为 el-tree 宽度 也是 100px 本来也就没有溢出 给 el-tree 添加样式 width: fit-content; min-width: -webkit-fill-available; …