目录
- 线程的概述
- 多线程的创建
- 方式一:继承Thread类
- 方式二:实现Runnable接口
- 方式三:利用Callable接口、FutureTask类来实现。
- Thread常用的方法
- 线程安全问题
- 线程安全问题概述
- 线程安全问题案例
- 取钱案例描述
- 模拟代码如下:
- 执行结果
- 线程同步
- 概述
- 线程同步的常见方案
- 1. 同步代码块
- 2. 同步方法
- 3. Lock锁
- 线程通信
- 概述
- 线程通信案例
- 案例代码实现
- 线程池
- 线程池概述
- 线程池创建
- 线程池执行Runnable任务
- 代码案例
- 线程池执行Callable任务
- 代码案例
- 核心线程数量到底应该配置多少呢?
- 线程池工具类(Executors)
- 并发、并行和生命周期
- 并发和并行
- 1. 什么是进程、线程?
- 2. 什么是并发?
- 3. 什么是并行?
- 4. 多线程到底是并发还是并行呢?
- 线程的生命周期
- 乐观锁与悲观锁
线程的概述
什么是线程?
线程(Thread)是一个程序内部的一条执行流程。
程序中如果只有一条执行流程,那这个程序就是单线程的程序
什么是多线程?
多线程是指从软硬件上实现的多条执行流程的技术(多条线程由CPU负责调度执行)
如何在程序中创建出多条线程?
Java是通过java.lang.Thread 类的对象来代表线程的。
多线程的创建
方式一:继承Thread类
- 定义一个子类MyThread继承线程类java.lang.Thread,重写run()方法
- 创建MyThread类的对象
- 调用线程对象的start()方法启动线程(启动后还是执行run方法的)
示例代码如下:
主线程类:
public class ThreadTest1 {
// main方法是由一条默认的主线程负责执行。
public static void main(String[] args) {
// 3、创建MyThread线程类的对象代表一个线程
Thread t = new MyThread();
// 4、启动线程(自动执行run方法的)
t.start(); // main线程 t线程
for (int i = 1; i <= 5; i++) {
System.out.println("主线程main输出:" + i);
}
}
}
子线程类:
/**
* 1、让子类继承Thread线程类。
*/
public class MyThread extends Thread{
// 2、必须重写Thread类的run方法
@Override
public void run() {
// 描述线程的执行任务。
for (int i = 1; i <= 5; i++) {
System.out.println("子线程MyThread输出:" + i);
}
}
}
方式一优缺点:
优点:编码简单
缺点:线程类已经继承Thread,无法继承其他类,不利于功能的扩展。
多线程的注意事项
1、启动线程必须是调用start方法,不是调用run方法。
直接调用run方法会当成普通方法执行,此时相当于还是单线程执行。
只有调用start方法才是启动一个新的线程执行。
2、不要把主线程任务放在启动子线程之前。
这样主线程一直是先跑完的,相当于是一个单线程的效果了。
方式二:实现Runnable接口
- 定义一个线程任务类MyRunnable实现Runnable接口,重写run()方法
- 创建MyRunnable任务对象
- 把MyRunnable任务对象交给Thread处理。
- 调用线程对象的start()方法启动线程
示例代码如下:
定义一个任务类
/**
* 1、定义一个任务类,实现Runnable接口
*/
public class MyRunnable implements Runnable{
// 2、重写runnable的run方法
@Override
public void run() {
// 线程要执行的任务。
for (int i = 1; i <= 5; i++) {
System.out.println("子线程输出 ===》" + i);
}
}
}
主线程类
/**
* 多线程的创建方式二:实现Runnable接口。
*/
public class ThreadTest2 {
public static void main(String[] args) {
// 3、创建任务对象。
Runnable target = new MyRunnable();
// 4、把任务对象交给一个线程对象处理。
// public Thread(Runnable target)
new Thread(target).start();
for (int i = 1; i <= 5; i++) {
System.out.println("主线程main输出 ===》" + i);
}
}
}
方式二的优缺点
优点:任务类只是实现接口,可以继续继承其他类、实现其他接口,扩展性强。
缺点:需要多一个Runnable对象。
线程创建方式二的匿名内部类写法
- 可以创建Runnable的匿名内部类对象。
- 再交给Thread线程对象。
- 再调用线程对象的start()启动线程。
代码示例:
/**
* 多线程创建方式二的匿名内部类写法。
*/
public class ThreadTest2_2 {
public static void main(String[] args) {
// 1、直接创建Runnable接口的匿名内部类形式(任务对象)
Runnable target = new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 5; i++) {
System.out.println("子线程1输出:" + i);
}
}
};
new Thread(target).start();
// 简化形式1:
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 5; i++) {
System.out.println("子线程2输出:" + i);
}
}
}).start();
// 简化形式2:
new Thread(() -> {
for (int i = 1; i <= 5; i++) {
System.out.println("子线程3输出:" + i);
}
}).start();
for (int i = 1; i <= 5; i++) {
System.out.println("主线程main输出:" + i);
}
}
}
方式三:利用Callable接口、FutureTask类来实现。
前两种线程创建方式都存在的一个问题:
假如线程执行完毕后有一些数据需要返回,他们重写的run方法均不能直接返回结果。
怎么解决这个问题?
JDK 5.0提供了Callable接口和FutureTask类来实现(多线程的第三种创建方式)。
这种方式最大的优点:可以返回线程执行完毕后的结果
方式三 实现步骤:
- 创建任务对象
定义一个类实现Callable接口,重写call方法,封装要做的事情,和要返回的数据。
把Callable类型的对象封装成FutureTask(线程任务对象)。 - 把线程任务对象交给Thread对象。
- 调用Thread对象的start方法启动线程。
- 线程执行完毕后、通过FutureTask对象的的get方法去获取线程任务执行的结果。
示例代码如下:
创建任务对象类
import java.util.concurrent.Callable;
/**
* 1、让这个类实现Callable接口
*/
public class MyCallable implements Callable<String> {
private int n;
public MyCallable(int n) {
this.n = n;
}
// 2、重写call方法
@Override
public String call() throws Exception {
// 描述线程的任务,返回线程执行返回后的结果。
// 需求:求1-n的和返回。
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += i;
}
return "线程求出了1-" + n + "的和是:" + sum;
}
}
主线程类
import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;
/**
* 线程的创建方式三:实现Callable接口。
*/
public class ThreadTest3 {
public static void main(String[] args) throws Exception {
// 3、创建一个Callable的对象
Callable<String> call = new MyCallable(100);
// 4、把Callable的对象封装成一个FutureTask对象(任务对象)
// 未来任务对象的作用?
// 1、是一个任务对象,实现了Runnable对象.
// 2、可以在线程执行完毕之后,用未来任务对象调用get方法获取线程执行完毕后的结果。
FutureTask<String> f1 = new FutureTask<>(call);
// 5、把任务对象交给一个Thread对象
new Thread(f1).start();
Callable<String> call2 = new MyCallable(200);
FutureTask<String> f2 = new FutureTask<>(call2);
new Thread(f2).start();
// 6、获取线程执行完毕后返回的结果。
// 注意:如果执行到这儿,假如上面的线程还没有执行完毕
// 这里的代码会暂停,等待上面线程执行完毕后才会获取结果。
String rs = f1.get();
System.out.println(rs);
String rs2 = f2.get();
System.out.println(rs2);
}
}
FutureTask的API
方式三的优缺点
优点:线程任务类只是实现接口,可以继续继承类和实现接口,扩展性强;可以在线程执行完毕后去获取线程执行的结果:
缺点:编码复杂一点。线程创建方式三的优缺点
优点:线程任务类只是实现接口,可以继续继承类和实现接口,扩展性强;可以在线程执行完毕后去获取线程执行的结果。
缺点:编码复杂一点。
Thread常用的方法
Thread提供了很多与线程操作相关的方法
示例代码:
子线程
public class MyThread extends Thread{
public MyThread(String name){
super(name); // 为当前线程设置名字了
}
@Override
public void run() {
// 哪个线程执行它,它就会得到哪个线程对象。
Thread t = Thread.currentThread();
for (int i = 1; i <= 3; i++) {
System.out.println(t.getName() + "输出:" + i);
}
}
}
主方法
/**
* Thread的常用方法。
*/
public class ThreadTest1 {
public static void main(String[] args) {
Thread t1 = new MyThread("1号线程");
// t1.setName("1号线程");
t1.start();
System.out.println(t1.getName()); // Thread-0
Thread t2 = new MyThread("2号线程");
// t2.setName("2号线程");
t2.start();
System.out.println(t2.getName()); // Thread-1
// 主线程对象的名字
// 哪个线程执行它,它就会得到哪个线程对象。
Thread m = Thread.currentThread();
m.setName("最牛的线程");
System.out.println(m.getName()); // main
for (int i = 1; i <= 5; i++) {
System.out.println(m.getName() + "线程输出:" + i);
}
}
}
掌握sleep方法,join方法的作用
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* sleep方法,join方法的作用。
*/
public class ThreadTest2 {
public static void main(String[] args) throws Exception {
System.out.println(Runtime.getRuntime().availableProcessors());
for (int i = 1; i <= 5; i++) {
System.out.println(i);
// 休眠5s
if(i == 3){
// 会让当前执行的线程暂停5秒,再继续执行
// 项目经理让我加上这行代码,如果用户交钱了,我就注释掉!
Thread.sleep(5000);
}
}
// join方法作用:让当前调用这个方法的线程先执行完。
Thread t1 = new MyThread("1号线程");
t1.start();
t1.join();
Thread t2 = new MyThread("2号线程");
t2.start();
t2.join();
Thread t3 = new MyThread("3号线程");
t3.start();
t3.join();
}
}
线程安全问题
线程安全问题概述
什么是线程安全问题?
多个线程,同时操作同一个共享资源的时候,可能会出现业务安全问题。
线程安全问题出现的原因?
- 存在多个线程在同时执行
- 同时访问一个共享资源
- 存在修改该共享资源
线程安全问题案例
取钱案例描述
需求:
小明和小红是一对夫妻,他们有一个共同的账户,余额是10万元,模拟2人同时去取钱10万。
分析:
1. 需要提供一个账户类,接着创建一个账户对象代表2个人的共享账户。
2. 需要定义一个线程类(用于创建两个线程,分别代表小明和小红),
3. 创建2个线程,传入同一个账户对象给2个线程处理。
4. 启动2个线程,同时去同一个账户对象中取钱10万。
出现线程安全问题的步骤:
模拟代码如下:
先定义一个共享的账户类
public class Account {
private String cardId; // 卡号
private double money; // 余额。
public Account() {
}
public Account(String cardId, double money) {
this.cardId = cardId;
this.money = money;
}
// 小明 小红同时过来的
public void drawMoney(double money) {
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
// 1、判断余额是否足够
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
}
public String getCardId() {
return cardId;
}
public void setCardId(String cardId) {
this.cardId = cardId;
}
public double getMoney() {
return money;
}
public void setMoney(double money) {
this.money = money;
}
}
在定义一个取钱的线程类
public class DrawThread extends Thread{
private Account acc;
public DrawThread(Account acc, String name){
super(name);
this.acc = acc;
}
@Override
public void run() {
// 取钱(小明,小红)
acc.drawMoney(100000);
}
}
最后,再写一个测试类,在测试类中创建两个线程对象
public class ThreadTest {
public static void main(String[] args) {
// 1、创建一个账户对象,代表两个人的共享账户。
Account acc = new Account("ICBC-110", 100000);
// 2、创建两个线程,分别代表小明 小红,再去同一个账户对象中取钱10万。
new DrawThread(acc, "小明").start(); // 小明
new DrawThread(acc, "小红").start(); // 小红
}
}
执行结果
某个执行结果:
小明来取钱100000.0成功!
小红来取钱100000.0成功!
小红来取钱后,余额剩余:-100000.0
小明来取钱后,余额剩余:0.0
线程同步
概述
线程同步解决线程安全问题的方案。
线程同步的思想
让多个线程实现先后依次访问共享资源,这样就解决了安全问题。
线程同步的常见方案
加锁:每次只允许一个线程加锁,加锁后才能进入访问,访问完毕后自动解锁,然后其他线程才能再加锁进来。
Java提供了三种方案:
- 同步代码块
- 同步方法
- Lock锁
1. 同步代码块
作用:把访问共享资源的核心代码给上锁,以此保证线程安全。
synchronized(同步锁){
访问共享资源的核心代码
}
原理:每次只允许一个线程加锁后进入,执行完毕后自动解锁,其他线程才可以进来执行。
同步锁的注意事项
对于当前同时执行的线程来说,同步锁必须是同一把(同一个对象),否则会出bug。
代码示例
在共享账户类里使用同步代码块,来解决前面代码里面的线程安全问题。我们只需要修改Account类中的代码即可。
// 小明 小红线程同时过来的
public void drawMoney(double money) {
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
// 1、判断余额是否足够
// this表示该账户对象,正好代表共享资源!
synchronized (this) {
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
}
}
执行结果:
小明来取钱100000.0成功!
小明来取钱后,余额剩余:0.0
小红来取钱:余额不足~
锁对象如何选择的问题
1. 建议把共享资源作为锁对象, 不要将随便无关的对象当做锁对象
我们把锁改为"锁" 这样一个字符串也行 因为这个资源在内存中永远只有一份
所以各个线程需要去竞争 但是这样好不好? 明显不行 万一有另外俩个人再创了一个账户 那就变成了四个人竞争一把锁了
2. 对于实例方法,建议使用this作为锁对象
3. 对于静态方法,建议把类的字节码(类名.class)当做锁对象这里是Account.class
2. 同步方法
同步方法,就是把整个方法给锁住,一个线程调用这个方法,另一个线程调用的时候就执行不了,只有等上一个线程调用结束,下一个线程调用才能继续执行,同样是修改Account类中的代码即可。
修饰符 synchronized 返回值类型 方法名称(形参列表){
操作共享资源的代码
}
原理:每次只能一个线程进入,执行完毕以后自动解锁,其他线程才可以进来执行。
同步方法底层原理
- 同步方法其实底层也是有隐式锁对象的,只是锁的范围是整个方法代码。
- 如果方法是实例方法:同步方法默认用this作为的锁对象
- 如果方法是静态方法:同步方法默认用类名.class作为的锁对象。
示例代码如下:
// 同步方法
public synchronized void drawMoney(double money) {
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
// 1、判断余额是否足够
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
}
同步代码块和同步方法区别
1.不存在哪个好与不好,只是一个锁住的范围大,一个范围小
其中锁的范围小一点 性能稍微好一点 可以提前加载那些公共区域的代码 但是提升的性能对于现在的计算机来说可以忽略不计
反而同步方法的可读性要好一些
2.同步方法是将方法中所有的代码锁住
3.同步代码块是将方法中的部分代码锁住
3. Lock锁
Lock锁是JDK5开始提供的一个新的锁定操作,通过它可以创建出锁对象进行加锁和解锁,更灵活、更方便、更强大。
Lock是接口,不能直接实例化,可以采用它的实现类ReentrantLock来构建Lock锁对象。
Lock锁是JDK5版本专门提供的一种锁对象,通过这个锁对象的方法来达到加锁,和释放锁的目的,使用起来更加灵活。格式如下
1.首先在成员变量位置,需要创建一个Lock接口的实现类对象(这个对象就是锁对象)
private final Lock lk = new ReentrantLock();
2.在需要上锁的地方加入下面的代码
lk.lock(); // 加锁
//...中间是被锁住的代码...
lk.unlock(); // 解锁
使用Lock锁改写前面DrawThread中取钱的方法,代码如下
// 创建了一个锁对象
//因为俩个线程公用一个账户 所以建立一个实例变量作为锁是可以的
//用final修饰更专业 防止二次赋值
private final Lock lk = new ReentrantLock();
public void drawMoney(double money) {
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
try {//用try cath finally写更专业 因为你不能保证被锁的代码没有bug 有bug也要及时解锁
lk.lock(); // 加锁
// 1、判断余额是否足够
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lk.unlock(); // 解锁
}
}
}
运行程序结果,观察线程安全问题已解决。
注意事项:
-
lock锁需要使用final修饰更专业 防止二次赋值
private final Lock lk = new ReentrantLock(); -
加锁和解锁时用try cath finally写更专业 因为你不能保证被锁的代码没有bug 有bug也要及时解锁
线程通信
概述
什么是线程通信?
当多个线程共同操作共享的资源时,线程间通过某种方式互相告知自己的状态,以相互协调,并避免无效的资源争夺。
线程通信的常见模型(生产者与消费者模型)
- 生产者线程负责生产数据
- 消费者线程负责消费生产者生产的数据。
- 注意:生产者生产完数据应该等待自己,通知消费者消费;消费者消费完数据也应该等待自己,再通知生产者生产!
线程通信案例
比如下面案例中,有3个厨师(生产者线程),两个顾客(消费者线程)。
案例的思路:
1.先确定在这个案例中,什么是共享数据?
答:这里案例中桌子是共享数据,因为厨师和顾客都需要对桌子上的包子进行操作。
2.再确定有那几条线程?哪个是生产者,哪个是消费者?
答:厨师是生产者线程,3条生产者线程;
顾客是消费者线程,2条消费者线程
3.什么时候将哪一个线程设置为什么状态
生产者线程(厨师)放包子:
1)先判断是否有包子
2)没有包子时,厨师开始做包子, 做完之后把别人唤醒,然后让自己等待
3)有包子时,不做包子了,直接唤醒别人、然后让自己等待
消费者线程(顾客)吃包子:
1)先判断是否有包子
2)有包子时,顾客开始吃包子, 吃完之后把别人唤醒,然后让自己等待
3)没有包子时,不吃包子了,直接唤醒别人、然后让自己等待
注意:上述方法应该使用当前同步锁对象进行调用。
释放当前锁对象时,必须先唤醒其他线程,再释放自己所占锁
案例代码实现
按照上面分析的思路和java Object提供的api写代码。先写桌子类,代码如下
public class Desk {
private List<String> list = new ArrayList<>();
// 放1个包子的方法
// 厨师1 厨师2 厨师3
//实例方法默认用this作为锁 所以可以保证锁住5个线程 它们公用一个桌子对象
//锁也是可以跨方法的
public synchronized void put() {
try {
String name = Thread.currentThread().getName();
// 判断是否有包子。
if(list.size() == 0){
list.add(name + "做的肉包子");
System.out.println(name + "做了一个肉包子~~");
Thread.sleep(2000);//让程序跑慢点容易观察
// 唤醒别人, 等待自己
this.notifyAll();//必须用当前同步锁对象进行调用 否则会出bug
this.wait();//因为只有锁对象知道当前谁占据着它 谁需要等待
}else {
// 有包子了,不做了。
// 唤醒别人, 等待自己
this.notifyAll();//注意!!!notifyAll()和wait()位置不能调换
this.wait();//你如果先wait了 你让自己等待了 那你还怎么唤醒别人
}
} catch (Exception e) {//拦截sleep异常
e.printStackTrace();
}
}
// 吃货1 吃货2
public synchronized void get() {
try {
String name = Thread.currentThread().getName();
if(list.size() == 1){
// 有包子,吃了
System.out.println(name + "吃了:" + list.get(0));
list.clear();
Thread.sleep(1000);
this.notifyAll();
this.wait();
}else {
// 没有包子
this.notifyAll();
this.wait();
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
再写测试类,在测试类中,创建3个厨师线程对象,再创建2个顾客对象,并启动所有线程
public class ThreadTest {
public static void main(String[] args) {
// 需求:3个生产者线程,负责生产包子,每个线程每次只能生产1个包子放在桌子上
// 2个消费者线程负责吃包子,每人每次只能从桌子上拿1个包子吃。
Desk desk = new Desk();
// 创建3个生产者线程(3个厨师)
new Thread(() -> {//匿名内部类写法
while (true) {
desk.put();
}
}, "厨师1").start();
new Thread(() -> {
while (true) {
desk.put();
}
}, "厨师2").start();
new Thread(() -> {
while (true) {
desk.put();
}
}, "厨师3").start();
// 创建2个消费者线程(2个吃货)
new Thread(() -> {
while (true) {
desk.get();
}
}, "吃货1").start();
new Thread(() -> {
while (true) {
desk.get();
}
}, "吃货2").start();
}
}
执行结果如下:
厨师1做了一个肉包子~~
吃货2吃了:厨师1做的肉包子
厨师3做了一个肉包子~~
吃货1吃了:厨师3做的肉包子
厨师1做了一个肉包子~~
吃货1吃了:厨师1做的肉包子
厨师3做了一个肉包子~~
吃货1吃了:厨师3做的肉包子
厨师1做了一个肉包子~~
吃货2吃了:厨师1做的肉包子
//不终止则一直运行下去 可以发现没有出现线程安全问题
线程池
线程池概述
-
什么是线程池?
线程池就是一个可以复用线程的技术。 -
不使用线程池的问题:
用户每发起一个请求,后台就需要创建一个新线程来处理,下次新任务来了肯定又要创建新线程处理的,而创建新线程的开销是很大的,并且请求过多时,肯定会产生大量的线程出来,这样会严重影响系统的性能。 -
线程池解决的问题:
使用线程池,就可以解决上面的问题。线程池内部会有一个容器,存储几个核心线程,假设有3个核心线程,这3个核心线程可以处理3个任务。
但是任务总有被执行完的时候,假设第1个线程的任务执行完了,那么第1个线程就空闲下来了,有新的任务时,空闲下来的第1个线程可以去执行其他任务。依此内推,这3个线程可以不断的复用,也可以执行很多个任务。
所以,线程池就是一个线程复用技术,它可以提高线程的利用率。
线程池创建
在JDK5版本中提供了代表线程池的接口ExecutorService,而这个接口下有一个实现类叫ThreadPoolExecutor类,使用ThreadPoolExecutor类就可以用来创建线程池对象。下面是它的构造器,参数比较多
用这7个参数的构造器来创建线程池的对象。代码如下
ExecutorService pool = new ThreadPoolExecutor(
3, //核心线程数有3个
5, //最大线程数有5个。 临时线程数=最大线程数-核心线程数=5-3=2
8, //临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
TimeUnit.SECONDS,//时间单位(秒)
new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在任务队列中等待
Executors.defaultThreadFactory(), //用于创建线程的工厂对象
new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);
关于线程池,需要注意下面的两个问题
-
临时线程什么时候创建?
注意!新任务提交时,发现核心线程都在忙、并且任务队列满了、并且还可以创建临时线程,此时会创建临时线程。
注意是任务队列满了之后才会创建临时线程 而不是临时线程满了才加入任务队列 -
什么时候开始拒绝新的任务?
核心线程和临时线程都在忙、任务队列也满了、新任务过来时才会开始拒绝任务。
线程池执行Runnable任务
创建好线程池之后,接下来我们就可以使用线程池执行任务了。
线程池执行的任务可以有两种,一种是Runnable任务;一种是callable任务。
下面的execute方法可以用来执行Runnable任务。
代码案例
先准备一个线程任务类
public class MyRunnable implements Runnable{
@Override
public void run() {
// 任务是干啥的?
System.out.println(Thread.currentThread().getName() + " ==> 输出666~~");
//为了模拟线程一直在执行,这里睡久一点
try {
Thread.sleep(Integer.MAX_VALUE);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
线程池处理任务类
执行Runnable任务的代码,注意阅读注释,对照着前面的7个参数理解。
public class ThreadPoolTest1 {
public static void main(String[] args) {
// 1、通过ThreadPoolExecutor创建一个线程池对象。
ExecutorService pool = new ThreadPoolExecutor(3, 5, 8,
TimeUnit.SECONDS, new ArrayBlockingQueue<>(4), Executors.defaultThreadFactory(),
new ThreadPoolExecutor.CallerRunsPolicy());
Runnable target = new MyRunnable();
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target);
pool.execute(target);
pool.execute(target);
pool.execute(target);
// 到了临时线程的创建时机了
pool.execute(target);
pool.execute(target);
// 到了新任务的拒绝时机了!
pool.execute(target);
// pool.shutdown(); // 等着线程池的任务全部执行完毕后,再关闭线程池
// pool.shutdownNow(); // 立即关闭线程池!不管任务是否执行完毕!
}
}
执行结果:
pool-1-thread-5 ==> 输出666~~
main ==> 输出666~~
pool-1-thread-1 ==> 输出666~~
pool-1-thread-3 ==> 输出666~~
pool-1-thread-4 ==> 输出666~~
pool-1-thread-2 ==> 输出666~~
//其中123是核心线程执行的 45是临时线程执行的
//注意程序还是一直运行的 线程池不会自动关闭 设计出来就是一直服务的
//main输出是因为使用了CallerRunsPolicy()拒绝策略 新来的要拒绝的任务由主线程main执行了
线程池执行Callable任务
Callable任务相对于Runnable任务来说,就是多了一个返回值。
执行Callable任务需要用到上面ExecutorService的submit方法
代码案例
先准备一个Callable线程任务
public class MyCallable implements Callable<String> {
private int n;
public MyCallable(int n) {
this.n = n;
}
// 2、重写call方法
@Override
public String call() throws Exception {
// 描述线程的任务,返回线程执行返回后的结果。
// 需求:求1-n的和返回。
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += i;
}
return Thread.currentThread().getName() + "求出了1-" + n + "的和是:" + sum;
}
}
再准备一个测试类,在测试类中创建线程池,并执行callable任务。
public class ThreadPoolTest2 {
public static void main(String[] args) throws Exception {
// 1、通过ThreadPoolExecutor创建一个线程池对象。
ExecutorService pool = new ThreadPoolExecutor(
3,
5,
8,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(4),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.CallerRunsPolicy());
// 2、使用线程处理Callable任务。
Future<String> f1 = pool.submit(new MyCallable(100));
Future<String> f2 = pool.submit(new MyCallable(200));
Future<String> f3 = pool.submit(new MyCallable(300));
Future<String> f4 = pool.submit(new MyCallable(400));
// 3、执行完Callable任务后,需要获取返回结果。
System.out.println(f1.get());
System.out.println(f2.get());
System.out.println(f3.get());
System.out.println(f4.get());
}
}
某次执行后,结果如下所示
pool-1-thread-1求出了1-100的和是:5050
pool-1-thread-2求出了1-200的和是:20100
pool-1-thread-3求出了1-300的和是:45150
pool-1-thread-3求出了1-400的和是:80200
核心线程数量到底应该配置多少呢?
根据经验法则,大致参考以下原则:
- 如果是计算密集型的任务:核心线程数量 = CPU的核数 + 1
- 如果是IO密集型的任务:核心线程数量 = CPU核数 * 2
CPU核数查看,这个cpu是16核。
线程池工具类(Executors)
Executors是一个线程池的工具类,提供了很多静态方法用于返回不同特点的线程池对象。
注意:这些方法的底层,都是通过线程池的实现类ThreadPoolExecutor创建的线程池对象。
测试代码:
public class ThreadPoolTest3 {
public static void main(String[] args) throws Exception {
// 1、通过Executors创建一个线程池对象。
ExecutorService pool = Executors.newFixedThreadPool(17);
// 2、使用线程处理Callable任务。
Future<String> f1 = pool.submit(new MyCallable(100));
Future<String> f2 = pool.submit(new MyCallable(200));
Future<String> f3 = pool.submit(new MyCallable(300));
Future<String> f4 = pool.submit(new MyCallable(400));
System.out.println(f1.get());
System.out.println(f2.get());
System.out.println(f3.get());
System.out.println(f4.get());
}
}
Executors创建线程池这么好用,为什么不推荐同学们使用呢?原因在这里:看下图,这是《阿里巴巴Java开发手册》提供的强制规范要求,在大型并发系统环境中容易出bug。
并发、并行和生命周期
并发和并行
1. 什么是进程、线程?
- 正常运行的程序(软件)就是一个独立的进程
- 线程是属于进程,一个进程中包含多个线程
- 进程中的线程其实并发和并行同时存在
可以打开系统的任务管理器看看(快捷键:Ctrl+Shfit+Esc),自己的电脑上目前有哪些进程。
2. 什么是并发?
进程中的线程由CPU负责调度执行,但是CPU同时处理线程的数量是有限的,为了保证全部线程都能执行到,CPU采用轮询机制为系统的每个线程服务,由于CPU切换的速度很快,给我们的感觉这些线程在同时执行,这就是并发。
简单记:并发就是多条线程交替执行
3. 什么是并行?
并行指的是,多个线程同时被CPU调度执行。如下图所示,多个CPU核心在执行多条线程
4. 多线程到底是并发还是并行呢?
其实多个线程在我们的电脑上执行,并发和并行是同时存在的。
线程的生命周期
在Thread类中有一个嵌套的枚举类叫Thread.Status,这里面定义了线程的6中状态。如下图所示
NEW: 新建状态,线程还没有启动
RUNNABLE: 可以运行状态,线程调用了start()方法后处于这个状态
BLOCKED: 锁阻塞状态,没有获取到锁处于这个状态
WAITING: 无限等待状态,线程执行时被调用了wait方法处于这个状态
TIMED_WAITING: 计时等待状态,线程执行时被调用了sleep(毫秒)或者wait(毫秒)方法处于这个状态
TERMINATED: 终止状态, 线程执行完毕或者遇到异常时,处于这个状态。
这几种状态之间切换关系如下图所示
线程的六种状态的总结
乐观锁与悲观锁
悲观锁:一上来就加锁,没有安全感,每次只能一个线程进入访问完毕后再解锁。是线程安全的,但是性能较差!
乐观锁:一开始不上锁,认为是没有问题的,大家一起跑,等要出线程安全问题的时候才开始控制。是线程安全的,且性能较好。
下面举例说明,先写一个没有锁的多线程场景:
public static void main(String[] args) throws Exception {
//需求:1个静态变量,100个线程,每个线程对其加100次 最终值为10000
Runnable target = new MyRunnable();
for (int i = 1; i <= 100; i++) {
new Thread(target).start();
}
}
public class MyRunnable implements Runnable{
private int count;//用实例变量代替静态变量 反正线程都是公用一个任务对象的 所以是可以的
@Override
public void run() {
//100次
for (int i = 0; i < 100; i++) {
System.out.println("count--------->"+(++count));
}
}
}
某次运行结果:
...
count--------->9989
count--------->9990
count--------->9991
count--------->9992
count--------->9993
count--------->9994
count--------->9995
count--------->9996
count--------->9997
count--------->9998
count--------->9999
//虽然概率比较小 还是出现了一次线程安全问题
//有一次增值计算重叠了 没有加到10000
乐观锁解决:
首先解释原理,安全问题来自于,比如当count是10时,俩个线程几乎同时进入,将其值修改成11,于是便发生了安全问题,少加了一次。乐观锁采用CAS算法(可以自己进入count.incrementAndGet()源码看看),在加之前就记录了count的原来的值,比如当线程进入时记录count是10,然后将其加到11准备写入时,发现count已经变成11了,于是会将这次修改写入作废,重复上述过程,重新加一次。
代码如下:
public class MyRunnable implements Runnable{
//整数修改的乐观锁:用java的原子类实现的
private AtomicInteger count = new AtomicInteger();
@Override
public void run() {
//100次
for (int i = 0; i < 100; i++) {
System.out.println("count--------->"+(count.incrementAndGet()));
}
}
}
执行结果可以发现没有线程安全问题。