Redis实现滑动窗口限流

news2025/1/18 18:59:07

常见限流算法

  1. 固定窗口算法

    在固定的时间窗口下进行计数,达到阈值就拒绝请求。固定窗口如果在窗口开始就打满阈值,窗口后半部分进入的请求都会拒绝。

  2. 滑动窗口算法

    在固定窗口的基础上,窗口会随着时间向前推移,可以在时间内平滑控制流量,解决固定窗口出现的突发流量问题。

  3. 漏斗算法

    请求来了先进入漏斗,漏斗以恒定的速率放行请求。

  4. 令牌桶算法

    在令牌桶中,以恒定的速率放入令牌,令牌桶也有一定的容量,如果满了令牌就无法放进去了。拿到令牌的请求通过,并消耗令牌,如果令牌桶中令牌为空,则会丢弃该请求。

redis实现滑动窗口算法

当有请求来的时候记录时间戳,统计窗口内请求的数量时只需要统计redis中记录的数量。可以使用redis中的zset结构来存储。key可以设置为请求的资源名,同时根据限流的对象,往key中加入限流对象信息。比如根据ip限制访问某个资源的流量,可以使用方法名+ip作为key。score设置为时间戳。value则可以根据请求参数等信息生成MD5,或者直接生成UUID来存入,防止并发时多个请求存入的score和value一样导致只存入一个数据。

步骤如下:

  1. 定义时间窗口
  2. 请求到来,丢弃时间窗口之外的数据,ZREMRANGEBYSCORE KEYS[i], -inf, window_start
  3. 判断时间窗口内的请求个数是否达到阈值。ZCARD KEYS[i] 要小于阈值
  4. 如果小于则通过zadd加入,超过则返回不放行

lua脚本:

local window_start = tonumber(ARGV[1])- tonumber(ARGV[2])
redis.call('ZREMRANGEBYSCORE', KEYS[1], '-inf', window_start)
local current_requests = redis.call('ZCARD', KEYS[1])
if current_requests < tonumber(ARGV[3]) then
    redis.call('ZADD', KEYS[1], tonumber(ARGV[1]), ARGV[4])
    return 1
else
    return 0
end

java通过注解+切面实现限流

在java中,我们的需求是对资源可以进行多种规则的限流。注解可以定义不同类型的限流,如:全局限流,根据IP限流,根据用户限流。对每种类型的限流可以在一个注解中定义多个限流规则。

整体效果如下:

@RateLimiter(rules = {@RateLimitRule(time = 50,count = 100),@RateLimitRule(time = 20,count = 10)}, type = LimitType.IP)
@RateLimiter(rules = {@RateLimitRule(time = 60,count = 1000)}, type = LimitType.DEFAULT)
public void update(){

}

定义注解

定义了三个注解:

  1. RateLimiter:限流注解
  2. RateLimitRule:限流规则
  3. RateLimiters:存放多个限流注解的容器,为了可以重复使用该注解

RateLimiter:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
// 支持重复注解
@Repeatable(value = RateLimiters.class)
public @interface RateLimiter {

    /**
     * 限流键前缀
     *
     * @return
     */
    String key() default "rate_limit:";

    /**
     * 限流规则
     *
     * @return
     */
    RateLimitRule[] rules() default {};

    /**
     * 限流类型
     *
     * @return
     */
    LimitType type() default LimitType.DEFAULT;
}

RateLimitRule:

public @interface RateLimitRule {
    /**
     * 时间窗口, 单位秒
     *
     * @return
     */
    int time() default 60;

    /**
     * 允许请求数
     *
     * @return
     */
    int count() default 100;
}

RateLimiters:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RateLimiters {
    RateLimiter[] value();
}

改造lua脚本

在实现切面之前,我们需要对lua脚本进行改造。我们的需求对资源可以进行多种规则的限流。根据限流类型和限流规则可以组合出不同的key,比如我们要对某个资源进行以下规则限流:全局限流(60s,1000次; 600s,5000次),根据ip限流(2s,5次)。

根据这些规则我们就需要使用3个zset分别来存放请求记录。并且当三个规则都没达到阈值时才放行请求,否则拒绝请求。

对lua脚本改造,支持多个key。

 
local flag = 1
for i = 1, #KEYS do
    local window_start = tonumber(ARGV[1])- tonumber(ARGV[(i-1)*3+2])
    redis.call('ZREMRANGEBYSCORE', KEYS[i], '-inf', window_start)
    local current_requests = redis.call('ZCARD', KEYS[i])
    if current_requests < tonumber(ARGV[(i-1)*3+3]) then
    else
        flag = 0
    end
end
if flag == 1 then
    for i = 1, #KEYS do
        redis.call('ZADD', KEYS[i], tonumber(ARGV[1]), ARGV[(i-1)*3+4])
    end
end
return flag

定义切面

定义一个切面实现限流逻辑:RateLimiterAspect

首先定义切点,由于我们可以重复使用注解,所以需要把RateLimiter和RateLimiters都定义为切点

@Pointcut("@annotation(com.imgyh.framework.annotation.RateLimiter)")
public void rateLimiter() {
}

@Pointcut("@annotation(com.imgyh.framework.annotation.RateLimiters)")
public void rateLimiters() {
}

在前置通知中实现限流逻辑:

主要流程如下:

  1. 把所有的RateLimiter都拿到,解析出限流规则和限流类型
  2. 根据限流规则和限流类型,获取所有的key和参数,为调用lua脚本做准备
  3. 调用lua脚本,根据返回值判断是否放行请求
// 定义切点之前的操作
@Before("rateLimiter() || rateLimiters()")
public void doBefore(JoinPoint point) {
    try {
        // 从切点获取方法签名
        MethodSignature signature = (MethodSignature) point.getSignature();
        // 获取方法
        Method method = signature.getMethod();
        String name = point.getTarget().getClass().getName() + "." + signature.getName();
        // 获取日志注解
        RateLimiter rateLimiter = method.getAnnotation(RateLimiter.class);
        RateLimiters rateLimiters = method.getAnnotation(RateLimiters.class);

        List<RateLimiter> limiters = new ArrayList<>();
        if (ObjectUtils.isNotNull(rateLimiter)) {
            limiters.add(rateLimiter);
        }

        if (ObjectUtils.isNotNull(rateLimiters)) {
            limiters.addAll(Arrays.asList(rateLimiters.value()));
        }

        if (!allowRequest(limiters, name)) {
            throw new ServiceException("访问过于频繁,请稍候再试");
        }

    } catch (ServiceException e) {
        throw e;
    } catch (Exception e) {
        throw new RuntimeException("服务器限流异常,请稍候再试");
    }
}

/**
  * 是否允许请求
  *
  * @param rateLimiters 限流注解
  * @param name         方法全名
  * @return 是否放行
  */
private boolean allowRequest(List<RateLimiter> rateLimiters, String name) {
    List<String> keys = getKeys(rateLimiters, name);
    Object[] args = getArgs(rateLimiters);
    Object res = redisTemplate.execute(limitScript, keys, args);

    return ObjectUtils.isNotNull(res) && (Long) res == 1L;
}

/**
  * 获取限流的键
  *
  * @param rateLimiters 限流注解
  * @param name         方法全名
  * @return
  */
private List<String> getKeys(List<RateLimiter> rateLimiters, String name) {
    List<String> keys = new ArrayList<>();

    for (RateLimiter rateLimiter : rateLimiters) {
        String key = rateLimiter.key();
        RateLimitRule[] rules = rateLimiter.rules();
        LimitType type = rateLimiter.type();

        StringBuilder sb = new StringBuilder();
        sb.append(key).append(name);

        if (LimitType.IP == type) {
            String ipAddr = IpUtils.getIpAddr();
            sb.append("_").append(ipAddr);
        } else if (LimitType.USER == type) {
            Long userId = SecurityUtils.getUserId();
            sb.append("_").append(userId);
        }
        for (RateLimitRule rule : rules) {
            int time = rule.time() * 1000;
            int count = rule.count();
            StringBuilder builder = new StringBuilder(sb);
            builder.append("_").append(time).append("_").append(count);
            keys.add(builder.toString());
        }
    }
    return keys;
}

/**
  * 获取需要的参数
  *
  * @param rateLimiters 限流注解
  * @return
     */
private Object[] getArgs(List<RateLimiter> rateLimiters) {
    List<Object> args = new ArrayList<>();
    args.add(System.currentTimeMillis());
    for (RateLimiter rateLimiter : rateLimiters) {
        RateLimitRule[] rules = rateLimiter.rules();
        for (RateLimitRule rule : rules) {
            int time = rule.time() * 1000;
            int count = rule.count();
            args.add(time);
            args.add(count);
            args.add(IdUtils.fastSimpleUUID());
        }
    }
    return args.toArray();
}

实例demo演示

demo源码仓库:github.com/imgyh/devel…

定义接口,并添加限流注解。

限制对某个用户只能1s中访问2次。对接口整体10s中访问50次,60秒访问100次。

当某个用户一秒钟请求超过两次时,抛出异常。

参考资源

  1. Hollis,《Java面试宝典》
  2. 一文搞懂高频面试题之限流算法,从算法原理到实现,再到对比分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470120.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对象池模板

概述 对象池的引入也是嵌入式开发的常用方法&#xff0c;也是内存预分配的一种&#xff0c;主要是用来隐藏全局对象的跟踪&#xff0c;通常预内存分配是通过数组来实现。 CMake配置 cmake_minimum_required(VERSION 3.5.1)project(objpool)add_executable(objpool objpool.cp…

2024“薪”风口、学习鸿蒙开发就业钱景如何?

随着华为的鸿蒙系统从诞生之初就备受关注&#xff0c;对于那些对鸿蒙开发感兴趣并希望在这一领域寻找职业发展的人来说&#xff0c;这是一个非常重要的问题。 那么&#xff0c;2024年学鸿蒙开发的就业前景如何呢&#xff1f; 一、彻底摆脱“安卓套壳”&#xff01; HarmonyO…

JVM垃圾收集器【如何找到垃圾、清除垃圾的算法、垃圾回收器】

JVM垃圾收集器 GC基本原理垃圾回收什么是垃圾?如何找到这个垃圾&#xff1f;1&#xff09;引用计数法&#xff08;Reference Counting&#xff09;2&#xff09;根可达算法&#xff08;GCRoots Tracing&#xff09;3&#xff09;回收过程4&#xff09;对象引用 清除垃圾的算法…

Excel的中高级用法

单元格格式&#xff0c;根据数值的正负分配不同的颜色和↑ ↓ 根据数值正负分配颜色 2-7 [蓝色]#,##0;[红色]-#,##0 分配颜色的基础上&#xff0c;根据正负加↑和↓ 2↑-7↓ 其实就是在上面颜色的代码基础上加个 向上的符号↑&#xff0c;或向下的符号↓ [蓝色]#,##0↑;[红色…

AI时代显卡如何选择,B100、H200、L40S、A100、H100、V100 含架构技术和性能对比

AI时代显卡如何选择&#xff0c;B100、H200、L40S、A100、H100、V100 含架构技术和性能对比。 英伟达系列显卡大解析B100、H200、L40S、A100、A800、H100、H800、V100如何选择&#xff0c;含架构技术和性能对比带你解决疑惑。 近期&#xff0c;AIGC领域呈现出一片繁荣景象&a…

wcf 简单实践 数据绑定 数据校验

1.概要 1.1 说明 数据校验&#xff0c;如果数据不合适&#xff0c;有提示。 1.2 要点 class User : IDataErrorInfothis.DataContext user;<Window.Resources><Setter Property"ToolTip" Value"{Binding RelativeSource{RelativeSource Self},Pat…

vue3个人网站电子宠物

预览 具体代码 Attack.gif Attacked.gif Static.gif Walk.gif <template><div class"pet-container" ref"petContainer"><p class"pet-msg">{{ pet.msg }}</p><img ref"petRef" click"debounce(attc…

platform(驱动层+应用层)实现终端和中断开关点灯

设备树文件添加 myplatform{compatible"hqyj,myplatform";interrupt-parent<&gpiof>;interrupts<8 0>,<7 0>,<9 0>;led1-gpio<&gpioe 10 0>;led2-gpio<&gpiof 10 0>;led3-gpio<&gpioe 8 0>;reg<0x123…

什么是抖音视频下载软件|视频批量下载|爬虫工具

抖音视频抓取软件是一款方便用户获取抖音平台上视频内容的工具。它具备以下主要功能&#xff1a; 批量视频提取&#xff1a;用户可以输入关键词&#xff0c;软件将自动搜索抖音平台上与关键词相关的视频&#xff0c;并将它们列出供用户选择和下载。用户可以随时停止搜索和下载过…

测试C#使用PuppeteerSharp将网页生成PDF文件

微信公众号“DotNet开发跳槽”、“dotNET跨平台”、“DotNet”发布了几篇将网页生成图片或pdf文件的文章&#xff08;参考文献2-5&#xff09;&#xff0c;其中介绍了使用puppeteer-sharp、Select.HtmlToPdf、iTextSharp等多种方式实现html转图片或pdf&#xff0c;正好最近有类…

2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特…

Linux之部署前后端分离项目

Nginx配置安装 1.安装依赖 我们这里安装的依赖是有4个的 [rootlocalhost opt]# yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 2.上传解压安装包 [rootlocalhost opt]# tar -xvf nginx-1.13.7.tar.gz -C /usr/local/java/3.安装Nginx &#xff0…

接口测试实战--自动化测试流程

一、项目前期准备 常见项目软件架构: springMvc:tomcat里运行war包(在webapps目录下) springboot:java -jar xx.jar -xms(**) 运行参数 springCloud:k8s部署,使用kubectl create -f xx.yaml 接口自动化测试介入需越早越好,只要api定义好就可以编写自动化脚本; 某个…

域名系统与IP地址分配

域名 域名的概述 域名是一个逻辑的概念&#xff0c;它不反映主机的物理地点 域名结构 由于数字形式的IP地址难以记忆和理解&#xff0c;为此人们采用英文符号来表示IP地址&#xff0c;这就产生了域名&#xff0c;域名长度不超过255各字符&#xff0c;每一层域名长度不超过6…

C语言中的函数设计与调用优化

大家好&#xff0c;今天给大家介绍C语言中的函数设计与调用优化&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 一、引言 在C语言中&#xff0c;函数是代码组织的基本单元&…

常用状态码

状态码 用于响应中的&#xff0c;表示响应的结果如何 1、200 OK 运行成功 2、404 Not Found 访问的资源没有找到&#xff08;url的路径&#xff09; 3、403 Forbidden 请求资源没有权限访问 4、405 Method Not Allowed 你的服务器只支持GET请求&#xff0c;但是你发了个PO…

OD(11)之Mermaid时间线图(Timeline diagram)使用详解

OD(11)之Mermaid时间线图(Timeline diagram)使用详解 Author: Once Day Date: 2024年2月25日 漫漫长路才刚刚开始… 全系列文章可参考专栏: Mermiad使用指南_Once_day的博客-CSDN博客 参考文章: 关于 Mermaid | Mermaid 中文网 (nodejs.cn)Mermaid | Diagramming and char…

YOLO如何训练自己的模型

目录 步骤 一、打标签 二、数据集 三、跑train代码出模型 四、跑detect代码出结果 五、详细操作 步骤 一、打标签 &#xff08;1&#xff09;在终端 pip install labelimg &#xff08;2&#xff09;在终端输入labelimg打开 如何打标签&#xff1a; 推荐文章&#xf…

(每日持续更新)jdk api之ObjectOutputStream基础、应用、实战

博主18年的互联网软件开发经验&#xff0c;从一名程序员小白逐步成为了一名架构师&#xff0c;我想通过平台将经验分享给大家&#xff0c;因此博主每天会在各个大牛网站点赞量超高的博客等寻找该技术栈的资料结合自己的经验&#xff0c;晚上进行用心精简、整理、总结、定稿&…

vue2和vue3对比(语法层面)

阅读文章你将收获&#xff1a; 1 了解不使用组件化工具时&#xff0c;vue在html是如何使用的 2 知道vue2的生命周期函数有哪些 3 知道如何在组件化开发中使用vue 4 大致了解了vue2和vue3在使用上什么不同 最后&#xff1a;vue2和vue3除了下面我列出的有差异化的地方&…