信号处理 | 短时傅里叶变换实战

news2024/11/20 11:45:40

短时傅里叶变换(STFT)原理

短时傅里叶变换(Short-Time Fourier Transform, STFT)是一种分析时变信号频率特性的方法。它通过将长时间的信号分割成较短的时间片段,然后对每个时间片段进行傅里叶变换,从而克服了传统傅里叶变换无法同时提供时间和频率信息的限制。
原理

  1. 分割信号:STFT首先将连续的信号分割成较短的时间片段。这通常通过乘以一个滑动窗口函数来实现,窗口函数在特定的时间区间内非零,并随着时间滑动。

  2. 窗口函数:窗口函数的选择对STFT的结果有重要影响。常用的窗口函数包括矩形窗、汉宁窗、汉明窗等。窗口函数的宽度(或称为窗口长度)决定了时间分辨率和频率分辨率的平衡:窗口越宽,频率分辨率越高,时间分辨率越低;窗口越窄,时间分辨率越高,频率分辨率越低。

  3. 傅里叶变换:对每个时间片段应用傅里叶变换,计算该时间片段内信号的频率成分。这样,每个时间片段都对应一个频谱。

  4. 时间-频率表示:将所有时间片段的傅里叶变换结果组合起来,就可以得到信号的时间-频率表示,即STFT的结果。这个结果通常表示为一个二维数组,其中一个维度表示时间,另一个维度表示频率。
    数学表达式

STFT的数学表达式为:
S T F T { x ( t ) } ( τ , ω ) = ∫ − ∞ + ∞ x ( t ) ⋅ w ( t − τ ) ⋅ e − j ω t d t STFT\{x(t)\}(τ, ω) = \int_{-\infty}^{+\infty} x(t) \cdot w(t-τ) \cdot e^{-jωt} dt STFT{x(t)}(τ,ω)=+x(t)w(tτ)etdt
其中, x ( t ) x(t) x(t)是原始信号, w ( t − τ ) w(t-τ) w(tτ)是窗口函数, τ τ τ是时间变量,表示当前窗口的中心位置, ω ω ω是频率变量。
应用

STFT广泛应用于信号处理领域,如语音分析、音乐处理、地震数据分析等,它能够提供信号随时间变化的频率信息,对于非平稳信号分析尤为重要。

示例代码

生成模拟信号

import numpy as np
import scipy.io as scio

from matplotlib import pyplot as plt
from matplotlib import rcParams

绘制原始时域信号

def plt_time_domain(arr, fs=1600, ylabel='Amp(mg)', title='原始数据时域图', img_save_path=None, x_vline=None, y_hline=None):
    """
    :fun: 绘制时域图模板
    :param arr: 输入一维数组数据
    :param fs: 采样频率
    :param ylabel: y轴标签
    :param title: 图标题
    :return: None
    """
    import matplotlib.pyplot as plt
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文
    plt.rcParams['axes.unicode_minus'] = False  # 显示负号
    font = {'family': 'Times New Roman', 'size': '20', 'color': '0.5', 'weight': 'bold'}
    
    plt.figure(figsize=(12,4))
    length = len(arr)
    t = np.linspace(0, length/fs, length)
    plt.plot(t, arr, c='g')
    plt.xlabel('t(s)')
    plt.ylabel(ylabel)
    plt.title(title)
    if x_vline:
        plt.vlines(x=x_vline, ymin=np.min(arr), ymax=np.max(arr), linestyle='--', colors='r')
    if y_hline:
        plt.hlines(y=0.2, xmin=np.min(t), xmax=np.max(t), linestyle=':', colors='y')
    #===保存图片====#
    if img_save_path:
        plt.savefig(img_save_path, dpi=500, bbox_inches = 'tight')
    plt.show()
fs = 100  # 采样频率
f = 200    # 模拟正弦信号频率
time = 5  # 采样时长
t = np.linspace(0, time, time*fs)
data = 1*np.sin(2*np.pi*f*t) + np.random.normal(0, 0.1, time*fs)
plt_time_domain(data, fs=fs)

在这里插入图片描述

绘制STFT图

import scipy.signal as signal
import numpy as np
import matplotlib.pyplot as plt
 
f, t, nd = signal.stft(data, fs=fs, window='hann', nperseg=128, noverlap=64,nfft=None,
                       detrend=False, return_onesided=True, boundary='odd', padded=False, axis=-1)
#  fs:时间序列的采样频率,  nperseg:每个段的长度,默认为256(2^n)   noverlap:段之间重叠的点数。如果没有则noverlap=nperseg/2
 
#window : 字符串或元组或数组,可选需要使用的窗。
# #如果window是一个字符串或元组,则传递给它window是数组类型,直接以其为窗,其长度必须是nperseg。
# 常用的窗函数有boxcar,triang,hamming, hann等,默认为Hann窗。
 
#nfft : int,可选。如果需要零填充FFT,则为使用FFT的长度。如果为 None,则FFT长度为nperseg。默认为无
 
# detrend : str或function或False,可选
# 指定如何去除每个段的趋势。如果类型参数传递给False,则不进行去除趋势。默认为False。
 
# return_onesided : bool,可选
# 如果为True,则返回实际数据的单侧频谱。如果 False返回双侧频谱。默认为 True。请注意,对于复杂数据,始终返回双侧频谱。
 
# boundary : str或None,可选
# 指定输入信号是否在两端扩展,以及如何生成新值,以使第一个窗口段在第一个输入点上居中。
# 这具有当所采用的窗函数从零开始时能够重建第一输入点的益处。
# 有效选项是['even', 'odd', 'constant', 'zeros', None].
# 默认为‘zeros’,对于补零操作[1, 2, 3, 4]变成[0, 1, 2, 3, 4, 0] 当nperseg=3.
 
# padded: bool,可选
# 指定输入信号在末尾是否填充零以使信号精确地拟合为整数个窗口段,以便所有信号都包含在输出中。默认为True。
# 填充发生在边界扩展之后,如果边界不是None,则填充为True,默认情况下也是如此。
 
# axis : int,可选
# 计算STFT的轴; 默认值超过最后一个轴(即axis=-1)。

plt.figure(figsize=(12,4))
plt.pcolormesh(t, f, np.abs(nd), vmin = np.min(np.abs(nd)), vmax = np.max(np.abs(nd)))
plt.title('STFT')
plt.ylabel('frequency')
plt.xlabel('time')
plt.show()

在这里插入图片描述
可见在整个时间上存在10Hz的信号。

保存图片

plt.save_fig(file_path, bbox_inches='tight')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java程序设计】【C00300】基于Springboot的足球社区管理系统(有论文)

基于Springboot的足球社区管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的足球社区管理系统,本系统有管理员以及教练角色权限; 管理员设置的功能有:添加并管理各种类型…

代码随想录day33-动态规划的应用1

LeetCode62.不同路径 题目描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 …

可视化 RAG 数据 — 用于检索增强生成的 EDA

原文地址:Visualize your RAG Data — EDA for Retrieval-Augmented Generation 2024 年 2 月 8 日 Github:https://github.com/Renumics/rag-demo/blob/main/notebooks/visualize_rag_tutorial.ipynb 为探索Spotlight中的数据,我们使用Pa…

linux 文本编辑命令【重点】

目录 vi&vim介绍 vim安装 vim使用 查找命令 find grep 文本编辑的命令,主要包含两个: vi 和 vim vi&vim介绍 作用: vi命令是Linux系统提供的一个文本编辑工具,可以对文件内容进行编辑,类似于Windows中的记事本 语法: vi file…

NXP实战笔记(十):S32K3xx基于RTD-SDK在S32DS上配置CAN通信

目录 1、概述 2、SDK配置 2.1、配置目标 2.2、CAN配置 3、代码实现 4、测试结果 1、概述 S32K3xx的FlexCan与之前的S32K1xx很相似,Can的中断掩码寄存器(IMASK3)与中断标志位寄存器(IFLAG3)依赖于邮箱数。 FlexCan配置实例如下 FlexCan的整体图示如下 Protocol Engine…

MiKTeX安装后,Latex编译后PDF无法预览,是灰色的

解决方式删掉编译器就可以, 即删掉MiKTeX MiKTeX安装后会将编译器默认修改为MiKTeX,这个时候会显示报错,简单粗暴的方式是删掉MiKTeX软件

程序员可以做什么副业呢?

如果你经常玩知乎、看公众号(软件、工具、互联网这几类的)你就会发现,好多资源连接都变成了夸克网盘、迅雷网盘的资源链接。 例如:天涯神贴,基本上全是夸克、UC、迅雷网盘的资源链接。 有资源的前提下,迅雷…

纽约纳斯达克大屏投放受众群体有哪些-大舍传媒

纽约纳斯达克大屏投放受众群体有哪些-大舍传媒 1. 纳斯达克大屏的概述 纳斯达克大屏是全球金融市场中最出名的电子交易平台之一。作为一个重要的金融信息传递渠道,纳斯达克大屏吸引了来自全球的投资者的目光。在这个巨大的投放平台上,大舍传媒希望为客…

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ 💡往期推荐: 【机器学习基础】机器学习入门(1) 【机器学习基…

python中的类与对象(1)

目录 一. 引子:模板 二. 面向过程与面向对象 (1)面向过程编程 (2)面向对象编程 三. 对象与类 (1)对象 (2)类 四. 面向对象程序设计的特点:封装&#…

互联网加竞赛 机器视觉opencv答题卡识别系统

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 答题卡识别系统 - opencv python 图像识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分…

【k8s资源调度-HPA(自动扩缩容)】

1、HPA可以做什么? 通过观察pod的cpu、内存使用率或自定义metrics指标进行自动的扩容或缩容pod的数量。通常用于Deployment,不适用于无法扩/缩容的对象,如DaemonSet。控制管理器每隔30s(可以通过-horizontal-pod-autoscaler–sync-period修改…

TensorRT及CUDA自学笔记003 NVCC及其命令行参数

TensorRT及CUDA自学笔记003 NVCC及其命令行参数 各位大佬,这是我的自学笔记,如有错误请指正,也欢迎在评论区学习交流,谢谢! NVCC是一种编译器,基于一些命令行参数可以将使用PTX或C语言编写的代码编译成可…

STL容器之list

​ 1.封装除了对数据的保护、更好地管理数据之外,还有实现了对上层的统一; ​ 2.类模板参数的不同,一方面是为了实例化出来不同的类,另一方面是为了实现类的成员函数的不同; 一、认识list ​ 1.list是一种带头双向循…

软件实例,物流货运配货单打印模板软件单据打印查询管理系统软件教程,可以同时打印标签或补打

软件实例,物流货运配货单打印模板软件单据打印查询管理系统软件教程,可以同时打印标签或补打 一、前言 以下软件教程以 佳易王物流单打印查询系统V17.1为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 这个版本在原来基…

opencv绘制基本图形,在图片上添加文字

文章目录 1.opencv绘制基本图形1. 画直线, cv2.line( )2. 画长方形,cv2.rectangle( )3. 画圆型,cv2.circle( )4. 画折线,cv2.polylines( ) 2.图片上显示文字 本章主要阐述利用opencv绘制一些常见的图形方法和技巧,以及…

2024年贵州省事业单位考试下周一开始报名,千万不要错过报名时间

2024年贵州省事业单位考试公告已出!快看看你能不能报名! 1、报名时间安排 (一)网上报名 2024年2月26日-2024年2月28日 (二)网上资格初审 2024年2月26日-2024年2月29日 (三)网上缴费 2024年2月26日-2024年3月1日 2、笔试安排 2024年3月30日 08:30-10:…

HDL FPGA 学习 - FPGA基本要素,开发流程,Verilog语法和规范、编写技巧

目录 Altera FPGA 基本要素 FPGA 开发流程和适用范围 设计和实施规范 顶层设计的要点 Verilog HDL 语法规范 编写规范 设计技巧 编辑整理 by Staok,始于 2021.2 且无终稿。转载请注明作者及出处。整理不易,请多支持。 本文件是“瞰百易”计划的…

如何正确设置CrossOver之偏好设置 crossover软件使用 crossover设定 crossover软件安装

CrossOver的核心是Wine,Wine是一个能在多种POSIX-compliant操作系统(如:Linux、Mac OS等)上运行Windows应用的兼容层。Wine不是Windows的模拟工具,它是把Windows API 调用翻译成为动态的 POSIX 调用,实现Li…

东方博宜 1086. 姐妹数对

东方博宜 1086. 姐妹数对 思路&#xff1a;先按照题意把规律找出来&#xff0c;按照规律再写程序。 #include<iostream> using namespace std; int main() {int n ;cin >> n ;int sum 0 ;for(int i 1 ; i < n ; i){for(int j i1 ; j < n ; j){int m ;m …