基于ILI9341的TFT-LCD屏幕显示要点总结

news2024/11/20 15:27:53

目录

LCD常用引脚及其功能

LCD驱动流程

RGB565

关键指令

GRAM自增方向

设置开始坐标和结束坐标

写GRAM指令

读GRAM指令


本文主要参考视频如下:

第37讲 LCD-TFTLCD原理与配置介绍-M4_哔哩哔哩_bilibili

说明:

目前,市面上常见的TFT-LCD驱动芯片的原理都是大同小异的,这篇文章是基于驱动芯片ILI9341来说的。其实,只要弄懂了一种IC的原理,其他的都是差不多的,具体差异看一下具体芯片的数据手册就能明白了。

另外,对于TFT-LCD来说,使用并口刷新肯定是更优的选择,但是也有很多小屏幕用的是SPI接口。这篇文章参考的视频里用的是并口。

关于接口,可以参考这篇文章:LCD常见接口总结_lcd接口-CSDN博客

LCD常用引脚及其功能

常用引脚如下:

其中:

CS片选是选中芯片;

RD读信号和WR写信号决定当前是读还是写;

RS命令/数据决定当前是写入命令还是写入数据。

这里的DB是16位并口,但是也有的是使用SPI接口,具体看数据手册和硬件连接即可。

LCD驱动流程

说明,大部分TFT-LCD的驱动流程都是一样的,比较另类的可能也不常用。

流程如下:

复位部分一般都可以找厂家要,自己写的话,麻烦而且容易出错。

设置坐标,然后发一个写GRAM指令;

然后就可以开始写入颜色数据;

LCD显示;

要明确一个问题,那就是LCD显示,关键点其实就是坐标和颜色数据,任何图案都是在某个坐标上刷新颜色值(更底层是驱动LED亮),所以设置坐标后,发写GRAM指令,然后写入颜色数据,LCD就会在对应坐标位置显示给定的颜色了。

RGB565

如下图:

比如0xF800,对应二进制就是1111 1000 0000 0000,高5位都是1,其他位都是0,也就是说全是红色分量,没有另外两种颜色的分量,因此0xF800表示的就是纯红色。

关键指令

这里有个细节问题需要注意下,虽然所有指令和大部分操作参数都是8位的,但是它们整体是16位的,只是高8位无效而已,另外,RGB565的颜色数据也是16位的,而且,颜色数据是主要的数据源,所以我们在使用DMA时,可以将操作的数据位数设置成16位的,从而实现统一操作,省得又是8位又是16位。具体得看IC芯片是否支持。

以读ID指令为例说明下

顺序这一列说明的是发指令还是发参数;

控制这一列,是表示发送当前数据时,各控制位需要处于什么样的状态,比如第一行发送指令时,RS要置0,RD要置高,WR是有效的并且会在上升沿时写入;

再后面就是各位的描述以及对应的HEX码。

后面的参数行的WR置1,RD有向上的箭头,表示这四行数据是读出来的参数。

剩下的几条指令同理。 

GRAM自增方向

 

这里的三种关键控制位MY MX MV,决定了GRAM自增的方向,也就是LCD的扫描方向。

这个指令很重要。

正常我们如果想要往LCD上刷个像素点,就设置该点的坐标,然后刷上颜色值。

但是如果是想要刷一个区域的点呢?

最基础的方式就是设置一下坐标,刷一个点,再设置一下坐标,再刷一个点……如此循环往复,一次刷一个点,每次都要设置坐标。

但是这个GRAM自增指令就能让我们只用设置一个整体区域的开始和结束坐标,然后发送颜色数据时,GRAM坐标就会自动增长。这也是我们实现批量发送颜色数据的重要基础,我们可以通过DMA将数据批量发送出去,LCD收到数据时,就会按照设置好的坐标来刷新屏幕。

设置开始坐标和结束坐标

设置x的开始和x的结束坐标

设置y的开始和y的结束坐标

这里有个问题千万要注意,那就是最大的坐标会比屏幕的宽高各少1,因为坐标是从0开始的,和数组是一样的道理。

写GRAM指令

注意,GRAM是否自增是这个指令决定的,上面的0x36设置的是自增的方向。

读GRAM指令

注意,我们读数据时每读三个字节就要合成一个16位的颜色数据。

可以结合如下文章加深理解:

STM32实战总结:HAL之FSMC控制TFT-LCD_CSDN博客

TFT驱动ST7789使用总结-CSDN博客 

LCD常见接口总结_lcd接口-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469216.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

#FPGA(IRDA)

1.IDE:Quartus II 2.设备:Cyclone II EP2C8Q208C8N 3.实验:IRDA(仿真接收一个来自0x57地址的数据0x22 (十进制34)) 4.时序图: 5.步骤 6.代码: irda_receive.v module irda_receive ( input wire…

记一次生产jvm oom问题

前言 jvm添加以下参数,发生OOM时自动导出内存溢出文件 -XX:HeapDumpOnOutOfMemoryError -XX:HeapDumpPath/opt 内存分析工具: MAT, 下载地址:Eclipse Memory Analyzer Open Source Project | The Eclipse Foundation, 注意工具地址…

Uncertainty-Aware Mean Teacher(UA-MT)

Uncertainty-Aware Mean Teacher 0 FQA:1 UA-MT1.1 Introduction:1.2 semi-supervised segmentation1.3 Uncertainty-Aware Mean Teacher Framework 参考: 0 FQA: Q1: 不确定感知是什么意思?不确定信息是啥?Q2:这篇文章的精妙的点…

AI绘画工具有哪些?

AI绘画工具是利用人工智能技术来辅助或生成艺术作品的工具。这些工具可以分为两类:一类是生成艺术作品的工具,另一类是辅助艺术创作的工具。本文将介绍一些主流的AI绘画工具,并分析它们的特点和适用场景。 1. DALL-E DALL-E 是由 OpenAI 开发…

并发编程(5)共享模型之不可变

7 共享模型之不可变 本章内容 不可变类的使用不可变类设计无状态类设计 7.1 日期转换的问题 问题提出 下面的代码在运行时,由于 SimpleDateFormat 不是线程安全的, 有很大几率出现 java.lang.NumberFormatException 或者出现不正确的日期解析结果,…

Java+SpringBoot,打造极致申报体验

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

web安全学习笔记【16】——信息打点(6)

信息打点-语言框架&开发组件&FastJson&Shiro&Log4j&SpringBoot等[1] #知识点: 1、业务资产-应用类型分类 2、Web单域名获取-接口查询 3、Web子域名获取-解析枚举 4、Web架构资产-平台指纹识别 ------------------------------------ 1、开源-C…

东方博宜 1519. 求1~n中每个数的因子有哪些?

东方博宜 1519. 求1~n中每个数的因子有哪些&#xff1f; #include<iostream> using namespace std; int main() {int n ;cin >> n ;for(int i 1 ; i < n ; i){int a[1000] ;int k 0 ;for(int j 1 ; j < i ; j){if(i%j0){a[k] j ;k ;} }cout << i …

Golang Redis:构建高效和可扩展的应用程序

利用Redis的闪电般的数据存储和Golang的无缝集成解锁协同效应 在当前的应用程序开发中&#xff0c;高效的数据存储和检索的必要性已经变得至关重要。Redis&#xff0c;作为一个闪电般快速的开源内存数据结构存储方案&#xff0c;为各种应用场景提供了可靠的解决方案。在这份完…

从docx提取文本的Python实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

限流算法

下面对常见的限流算法进行讨论。目前&#xff0c;常用的限流算法主要有三种&#xff1a;计数器法、滑动窗口算法、漏桶算法和令牌桶算法。下面分别介绍其原理。 1. 计数器法 计数器法是通过计数对到来的请求进行选择性处理。如系统限制一秒内最多有X个请求&#xff0c;则在该…

opengles 顶点坐标变换常用的矩阵(九)

文章目录 前言一、opengles 常用的模型矩阵1. 单位矩阵2. 缩放矩阵3. 位移矩阵4. 旋转矩阵二、第三方矩阵数学库1. glm1.1 ubuntu 上安装 glm 库1.2 glm 使用实例1.2.1 生成一个沿Y轴旋转45度的4x4旋转矩阵, 代码实例如下1.2.2 生成一个将物体移到到Z轴正方向坐标为5处的4x4 vi…

黑马JavaWeb开发跟学(一)Web前端开发HTML、CSS基础

黑马JavaWeb开发一.Web前端开发HTML、CSS基础 引子、Web开发介绍传统路线本课程全新路线本课程适用人群课程收获一、什么是web开发二、网站的工作流程三、网站的开发模式四、网站的开发技术 前端开发基础一、前端开发二、HTML & CSS2.1 HTML快速入门2.1.1 操作第一步第二步…

数据存储-文件存储

一、CSV文件存储 csv是python的标准库 列表数据写入csv文件 import csvheader [班级, 姓名, 性别, 手机号, QQ] # 二维数组 rows [[学习一班, 大娃, 男, a130111111122, 987456123],[学习二班, 二娃, 女, a130111111123, 987456155],[学习三班, 三娃, 男, a130111111124, …

qt波位图

1&#xff0c;QPainter 绘制&#xff0c;先绘制这一堆蓝色的东西, 2&#xff0c;在用定时器&#xff1a;QTimer&#xff0c;配合绘制棕色的圆。用到取余&#xff0c;取整 #pragma once#include <QWidget> #include <QPaintEvent>#include <QTimer>QT_BEGIN_…

基于Docker和Springboot两种方式安装与部署Camunda流程引擎

文章目录 前言1、Docker安装1.1、拉取Camunda BPM镜像1.2、编写docker启动camunda容器脚本1.3、docker启动脚本1.4、访问验证 2、SpringBoot启动2.1、下载地址2.2、创建SpringBoot项目并配置基础信息2.3、下载SpringBoot项目并在idea中打开2.4、pom修改2.5、application.yml配置…

神经网络系列---感知机(Neuron)

文章目录 感知机(Neuron)感知机(Neuron)的决策函数可以表示为&#xff1a;感知机(Neuron)的学习算法主要包括以下步骤&#xff1a;感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。 感知机(Neuron) 感知机(Neuron)是一种简单而有效的二分类算法&#xff0c;用于将输入…

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集 一、算法原理二、代码三、结果1.sor统计滤波2.Ransac内点分割平面3.Ransac外点分割平面 四、相关数据 一、算法原理 1、Ransac介绍 RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outlier…

第6.3章:StarRocks查询加速——Bucket Shuffle Join

目录 一、StarRocks数据划分 1.1 分区 1.2 分桶 二、Bucket Shuffle Join实现原理 2.1 Bucket Shuffle Join概述 2.2 Bucket Shuffle Join工作原理 2.3 Bucket Shuffle Join规划规则 三、应用案例 注&#xff1a;本篇文章阐述的是StarRocks-3.2版本的Bucket Shuffle Jo…

计网 - 深入理解HTTPS:加密技术的背后

文章目录 Pre发展历史Http VS HttpsHTTPS 解决了 HTTP 的哪些问题HTTPS是如何解决上述三个风险的混合加密摘要算法 数字签名数字证书 Pre PKI - 数字签名与数字证书 PKI - 借助Nginx 实现Https 服务端单向认证、服务端客户端双向认证 发展历史 HTTP&#xff08;超文本传输协…