11-pytorch-使用自己的数据集测试

news2024/12/23 14:40:43

b站小土堆pytorch教程学习笔记

在这里插入图片描述

import torch
import torchvision
from PIL import Image
from torch import nn

img_path= '../imgs/dog.png'
image=Image.open(img_path)
print(image)
# image=image.convert('RGB')

transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                          torchvision.transforms.ToTensor()])
image=transform(image)
print(image.shape)

#加载模型
class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model=torch.load('../han_9.pth',map_location=torch.device('cpu'))#将GPU上运行的模型转移到CPU
print(model)

#对图片进行reshap
image=torch.reshape(image,(-1,3,32,32))

#将模型转化为测试类型
model.eval()
with torch.no_grad():#节约内存
    output=model(image)
print(output)


print(output.argmax(1))

<PIL.PngImagePlugin.PngImageFile image mode=RGB size=306x283 at 0x250B0006EE0>
torch.Size([3, 32, 32])
Han(
(model): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
tensor([[-2.0302, -0.6256, 0.7483, 1.5765, 0.2651, 2.2243, -0.7037, -0.5262,
-1.4401, -0.6563]])
tensor([5])
Process finished with exit code 0

预测正确!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1468808.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

stm32利用CubeMX完成按键控制LED灯的点亮与熄灭

首先画电图&#xff0c;如下&#xff1a;&#xff08;会话最小系统后就可以不画了&#xff0c;如果要是画实物的话必须要有的&#xff0c;不能忘&#xff0c;模拟就无所谓了&#xff09; 然后是CubeMX设置时钟 这次使用的是内部8M时钟&#xff0c;这样能避免proteus闪退的情况&…

虚 拟 化原理

1 概念&#xff1a; ①通俗理解&#xff1a; 虚拟化是在硬件和操作系统之间的实践 ②通过对计算机的服务层级的理解&#xff0c;理解虚拟化概念 抽离层级之间的依赖关系&#xff08;服务器虚拟化&#xff09; 2 虚拟化分类 ①按架构分类 ◆寄居架构&#xff1a;装在操作系统上…

鸿蒙LiteOS-M 内核初始化

目录 一、LiteOS-M 初始化内核二、LOS_KernelInit代码分析三、LOS_Start代码解析坚持就有收获 一、LiteOS-M 初始化内核 在LiteOS-M应用程序中&#xff0c;系统初始化如下&#xff1a; /*** brief This is the ohos entry, and you could call this in your main funciton af…

Flutter(一):安装和环境配置、创建Flutter项目

安装和环境配置、创建Flutter项目 Flutter 下载方式1方式2 Flutter 环境配置配置国内镜像站点解压 Flutter将 flutter 添加到系统环境变量中运行 flutter doctor来验证安装 Android Studio下载插件创建项目安装 Android SDK 工具在模拟器上运行 Flutter 下载 方式1 全版本&…

C++基础知识(四:类的学习)

类 类指的就是对同一类对象&#xff0c;把所有的属性都封装起来&#xff0c;你也可以把类看成一个高级版的结构体。 【1】定义 class 类名 { 访问权限:成员属性; 访问权限:成员方法; }访问权限&#xff1a; public:共有的&#xff0c;类内、类外和子类中都可以访问 private:私有…

Matlab: Introduction to Hybrid Beamforming

文章目录 来源混合波束赋形的基本概念System Setup 来源 在matlab的命令行输入 doc hybrid beamforming 混合波束赋形的基本概念 混合波束形成简介 本例介绍了混合波束形成的基本概念&#xff0c;并说明了如何模拟这种系统。 现代无线通信系统使用空间复用来提高散射体丰富…

创建者模式(Builder Pattern):构造复杂对象的通用解决方案

文章目录 **一、技术背景与应用场景****为何使用创建者模式&#xff1f;****典型应用场景包括但不限于&#xff1a;** **二、创建者模式定义与结构****三、使用步骤举例**四、优缺点分析总结 一、技术背景与应用场景 创建者模式是一种对象创建型设计模式&#xff0c;它通过将复…

代码随想录算法训练营29期|day60 任务以及具体安排

第九章 动态规划part17 647. 回文子串 class Solution {public int countSubstrings(String s) {char[] chars s.toCharArray();int len chars.length;boolean[][] dp new boolean[len][len];int result 0;for (int i len - 1; i > 0; i--) {for (int j i; j < le…

高级语言期末2011级A卷

1.编写函数&#xff0c;判定正整数m和n&#xff08;均至少为2&#xff09;是否满足&#xff1a;数m为数n可分解的最小质因数&#xff08;数n可分解的最小质因数为整除n的最小质数&#xff09; 提示&#xff1a;判定m为质数且m是n的最小因数 #include <stdio.h> #include…

算法打卡day1|数组篇|Leetcode 704.二分查找、27.移除元素

数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合&#xff0c;可以方便的通过下标索引的方式获取到下标下对应的数据。 1.数组下标都是从0开始的。 2.数组内存空间的地址是连续的。 正是因为数组的在内存空间的地址是连续的&#xff0c;所以我们在删除或者增添…

Visual Studio 打开.edmx文件不显示表并报错:没有可用于.edmx的编辑器

打开.edmx文件时&#xff0c;呈现的是xml视图&#xff0c;不显示Diagram视图&#xff0c;且弹出报错“没有可用于.edmx的编辑器” 解决方案&#xff1a;在.edmx文件上右键&#xff0c;选择ado.net entity data model designer&#xff0c;即可正常显示表

mysql-MVCC

一、基础概念 1. MVCC的含义 MVCC (Multiversion Concurrency Control)&#xff0c;即多版本并发控制技术&#xff0c;它是通过读取某个时间点的快照数据&#xff0c; 来降低并发事务冲突而引起的锁等待&#xff0c; 从而提高并发性能的一种机制. MVCC 的实现,是通过保存数据…

N种方法解决1(CTF)

这里遇到的问题&#xff1a;一开始采用的base64解码平台有问题&#xff1b;默认解密出的格式为GBK格式&#xff1b;直接复制粘贴发现无法还原图片&#xff1b;又尝试了其他编码的&#xff1b;发现只有hex格式可以保证图片正常还原&#xff1b; 图片是以二进制存储的&#xff1…

响应式页面兼容移动端

文章目录 1. 响应式开发1.1 原理1.2 响应式容器 2. Bootstrap前端开发框架2.1 Bootstrap介绍(1) 优点(2) 版本 2.2 Bootstrap使用2.3 布局容器(1) container类(2) container-fluid类 3.Bootstrap栅格系统3.1 介绍3.2 栅格选项参数3.3 列嵌套3.4 列偏移3.5 列排序3.6 响应式工具…

Android14之input高级调试技巧(一百八十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【Python笔记-设计模式】享元模式

一、说明 享元模式是一种结构型设计模式&#xff0c;它摒弃了在每个对象中保存所有数据的方式&#xff0c;通过共享多个对象所共有的相同状态&#xff0c;让你能在有限的内存容量中载入更多对象。 (一) 解决问题 旨在减少大量相似对象创建时的内存开销 (二) 使用场景 大量…

C++的STL常用算法->常用遍历算法、常用查找算法、常用排序算法、常用拷贝和替换算法、常用算术生成算法、常用集合算法

#include<iostream> using namespace std; #include <algorithm> #include <vector> //常用遍历算法 for_each //普通函数 void print01(int val) { cout << val << " "; } //仿函数 //函数对象 class print02 { public: v…

第 2 章 ROS通信机制_通信机制实操(自学二刷笔记)

重要参考&#xff1a; 课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ 讲义链接:Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 2.5.1 实操01_话题发布 需求描述&#xff1a;编码实现乌龟运动控制&#xff0c;让小乌龟做圆周运动。 结果演…

前端工程化面试题 | 16.精选前端工程化高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

微信小程序 uniapp+vue餐厅美食就餐推荐系统

本论文根据系统的开发流程以及一般论文的结构分为三个部分&#xff0c;第一个部分为摘要、外文翻译、目录&#xff1b;第二个部分为正文&#xff1b;第三个部分为致谢和参考文献。其中正文部分包括&#xff1a; &#xff08;1&#xff09;绪论&#xff0c;对课题背景、意义、目…