Matlab: Introduction to Hybrid Beamforming

news2024/11/16 7:36:26

文章目录

  • 来源
  • 混合波束赋形的基本概念
  • System Setup

来源

在matlab的命令行输入
doc hybrid beamforming

混合波束赋形的基本概念

混合波束形成简介
本例介绍了混合波束形成的基本概念,并说明了如何模拟这种系统。

现代无线通信系统使用空间复用来提高散射体丰富的环境中系统内的数据吞吐量。为了通过信道发送多个数据流,从信道矩阵中导出一组预编码和组合权重。那么每个数据流都可以独立恢复。这些权重包含幅度和相位项,通常应用于数字域。模拟这种系统的一个例子可以在使用天线阵列提高无线通信的SNR和容量的例子中找到。在下图所示的系统图中,每个天线都连接到一个独特的发射和接收(TR)模块。在这里插入图片描述

对高数据速率和更多用户容量的日益增长的需求增加了更有效地使用频谱的需求。因此,下一代5G无线系统将使用毫米波频段来利用其更宽的带宽。此外,5G系统部署了大规模天线阵列,以减轻毫米波频段的严重传播损耗。然而,这些配置带来了其独特的技术挑战。

与目前的无线系统相比,毫米波波段的波长要小得多。虽然这允许一个阵列包含更多具有相同物理尺寸的单元,但为每个天线单元提供一个TR模块会变得昂贵得多。因此,作为一种折衷,TR开关通常用于为多个天线元件供电。这与雷达社区中使用的子阵列配置是相同的概念。下图显示了一种这样的配置。在这里插入图片描述
上图显示,在发射端,TR开关的数量小于天线单元的数量 N T N_T NT。为了提供更大的灵活性,每个天线元件可以连接到一个或多个TR模块。此外,可以在每个TR模块和天线之间插入模拟移相器,以提供一些有限的转向能力。

接收器端的配置类似,如图所示。此系统可以支持的最大数据流数量 N S N_S NS N T R F N_{TRF} NTRF N R R F N_{RRF} NRRF中较小的一个。

在这种配置中,不再可能对每个天线元件应用数字权重。相反,数字权重只能应用于每个RF链。在元件级,信号由模拟移相器调整,该移相器仅改变信号的相位。因此,预编码或组合实际上分两个阶段完成。由于这种方法在数字域和模拟域都执行波束成形,因此被称为混合波束成形。

System Setup

This section simulates a 64 x 16 MIMO hybrid beamforming system, with a 64-element square array with 4 RF chains on the transmitter side and a 16-element square array with 4 RF chains on the receiver side.

Nt = 64;
NtRF = 4;

Nr = 16;
NrRF = 4;

In this simulation, it is assumed that each antenna is connected to all RF chains. Thus, each antenna is connected to 4 phase shifters. Such an array can be modeled by partitioning the array aperture into 4 completely connected subarrays.

rng(4096);
c = 3e8;
fc = 28e9;
lambda = c/fc;
txarray = phased.PartitionedArray(...
    'Array',phased.URA([sqrt(Nt) sqrt(Nt)],lambda/2),...
    'SubarraySelection',ones(NtRF,Nt),'SubarraySteering','Custom');
rxarray = phased.PartitionedArray(...
    'Array',phased.URA([sqrt(Nr) sqrt(Nr)],lambda/2),...
    'SubarraySelection',ones(NrRF,Nr),'SubarraySteering','Custom');

To maximize the spectral efficiency, each RF chain can be used to send an independent data stream. In this case, the system can support up to 4 streams.

Next, assume a scattering environment with 6 scattering clusters randomly distributed in space. Within each cluster, there are 8 closely located scatterers with an angle spread of 5 degrees, for a total of 48 scatterers. The path gain for each scatterer is obtained from a complex circular symmetric Gaussian distribution.

Ncl = 6;
Nray = 8;
Nscatter = Nray*Ncl;
angspread = 5;
% compute randomly placed scatterer clusters
txclang = [rand(1,Ncl)*120-60;rand(1,Ncl)*60-30];
rxclang = [rand(1,Ncl)*120-60;rand(1,Ncl)*60-30];
txang = zeros(2,Nscatter);
rxang = zeros(2,Nscatter);
% compute the rays within each cluster
for m = 1:Ncl
    txang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+txclang(:,m);
    rxang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+rxclang(:,m);
end

g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);

The channel matrix can be formed as 
txpos = getElementPosition(txarray)/lambda;
rxpos = getElementPosition(rxarray)/lambda;
H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);

Hybrid Weights Computation
In a spatial multiplexing system with all digital beamforming, the signal is modulated by a set of precoding weights, propagated through the channel, and recovered by a set of combining weights. Mathematically, this process can be described by Y = (XFH+N)W where X is an Ns-column matrix whose columns are data streams, F is an Ns Nt matrix representing the precoding weights, W is an Nr Ns matrix representing the combining weights, N is an Nr-column matrix whose columns are the receiver noise at each element, and Y is an Ns-column matrix whose columns are recovered data streams. Since the goal of the system is to achieve better spectral efficiency, obtaining the precoding and combining weights can be considered as an optimization problem where the optimal precoding and combining weights make the product of FHW’ a diagonal matrix so each data stream can be recovered independently.
In a hybrid beamforming system, the signal flow is similar. Both the precoding weights and the combining weights are combinations of baseband digital weights and RF band analog weights. The baseband digital weights convert the incoming data streams to input signals at each RF chain and the analog weights then convert the signal at each RF chain to the signal radiated or collected at each antenna element. Note that the analog weights can only contain phase shifts.
Mathematically, it can be written as F=Fbb
Frf and W=WbbWrf, where Fbb is an Ns NtRF matrix, Frf an NtRF Nt matrix, Wbb an NrRF Ns matrix, and Wrf an Nr NrRF matrix. Since both Frf and Wrf can only be used to modify the signal phase, there are extra constraints in the optimization process to identify the optimal precoding and combining weights. Ideally, the resulting combination of FbbFrf and Wrf*Wbb are close approximations of F and W that are obtained without those constraints.
Unfortunately, optimizing all four matrix variables simultaneously is quite difficult. Therefore, many algorithms are proposed to arrive at suboptimal weights with a reasonable computational load. This example uses the approach proposed in [1] which decouples the optimizations for the precoding and combining weights. It first uses the orthogonal matching pursuit algorithm to derive the precoding weights. Once the precoding weights are computed, the result is then used to obtain the corresponding combining weights.
Assuming the channel is known, the unconstrained optimal precoding weights can be obtained by diagonalizing the channel matrix and extracting the first NtRF dominating modes. The transmit beam pattern can be plotted as

F = diagbfweights(H);
F = F(1:NtRF,:);
pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
    'ElementWeights',F','PropagationSpeed',c);

The response pattern above shows that even in a multipath environment, there are limited number of dominant directions.
The hybrid weights, on the other hand, can be computed as

At = steervec(txpos,txang);
Ar = steervec(rxpos,rxang);

Ns = NtRF;
[Fbb,Frf] = omphybweights(H,Ns,NtRF,At);

The beam pattern of the hybrid weights is shown below:

pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
    'ElementWeights',Frf'*Fbb','PropagationSpeed',c);

Compared to the beam pattern obtained using the optimal weights, the beam pattern using the hybrid weights is similar, especially for dominant beams. This means that the data streams can be successfully transmitted through those beams using hybrid weights.

Spectral Efficiency Comparison
One of the system level performance metrics of a 5G system is the spectral efficiency. The next section compares the spectral efficiency achieved using the optimal weights with that of the proposed hybrid beamforming weights. The simulation assumes 1 or 2 data streams as outlined in [1]. The transmit antenna array is assumed to be at a base station, with a focused beamwidth of 60 degrees in azimuth and 20 degrees in elevation. The signal can arrive at the receive array from any direction. The resulting spectral efficiency curve is obtained from 50 Monte-Carlo trials for each SNR.

snr_param = -40:5:0;
Nsnr = numel(snr_param);
Ns_param = [1 2];
NNs = numel(Ns_param);

NtRF = 4;
NrRF = 4;

Ropt = zeros(Nsnr,NNs);
Rhyb = zeros(Nsnr,NNs);
Niter = 50;

for m = 1:Nsnr
    snr = db2pow(snr_param(m));
    for n = 1:Niter
        % Channel realization
        txang = [rand(1,Nscatter)*60-30;rand(1,Nscatter)*20-10];
        rxang = [rand(1,Nscatter)*180-90;rand(1,Nscatter)*90-45];
        At = steervec(txpos,txang);
        Ar = steervec(rxpos,rxang);
        g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);
        H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);
        
        for k = 1:NNs
            Ns = Ns_param(k);
            % Compute optimal weights and its spectral efficiency
            [Fopt,Wopt] = helperOptimalHybridWeights(H,Ns,1/snr);
            Ropt(m,k) = Ropt(m,k)+helperComputeSpectralEfficiency(H,Fopt,Wopt,Ns,snr);

            % Compute hybrid weights and its spectral efficiency
            [Fbb,Frf,Wbb,Wrf] = omphybweights(H,Ns,NtRF,At,NrRF,Ar,1/snr);
            Rhyb(m,k) = Rhyb(m,k)+helperComputeSpectralEfficiency(H,Fbb*Frf,Wrf*Wbb,Ns,snr);
        end
    end
end
Ropt = Ropt/Niter;
Rhyb = Rhyb/Niter;

plot(snr_param,Ropt(:,1),'--sr',...
    snr_param,Ropt(:,2),'--b',...
    snr_param,Rhyb(:,1),'-sr',...
    snr_param,Rhyb(:,2),'-b');
xlabel('SNR (dB)');
ylabel('Spectral Efficiency (bits/s/Hz');
legend('Ns=1 optimal','Ns=2 optimal','Ns=1 hybrid', 'Ns=2 hybrid',...
    'Location','best');
grid on;

在这里插入图片描述

This figure shows that the spectral efficiency improves significantly when we increase the number of data streams. In addition, the hybrid beamforming can perform close to what optimal weights can offer using less hardware.

Summary
This example introduces the basic concept of hybrid beamforming and shows how to split the precoding and combining weights using orthogonal matching pursuit algorithm. It shows that hybrid beamforming can closely match the performance offered by optimal digital weights.
References
[1] Omar El Ayach, et al. Spatially Sparse Precoding in Millimeter wave MIMO Systems, IEEE Transactions on Wireless Communications, Vol. 13, No. 3, March 2014.
Copyright 2017 The MathWorks, Inc.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1468798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

创建者模式(Builder Pattern):构造复杂对象的通用解决方案

文章目录 **一、技术背景与应用场景****为何使用创建者模式?****典型应用场景包括但不限于:** **二、创建者模式定义与结构****三、使用步骤举例**四、优缺点分析总结 一、技术背景与应用场景 创建者模式是一种对象创建型设计模式,它通过将复…

代码随想录算法训练营29期|day60 任务以及具体安排

第九章 动态规划part17 647. 回文子串 class Solution {public int countSubstrings(String s) {char[] chars s.toCharArray();int len chars.length;boolean[][] dp new boolean[len][len];int result 0;for (int i len - 1; i > 0; i--) {for (int j i; j < le…

高级语言期末2011级A卷

1.编写函数&#xff0c;判定正整数m和n&#xff08;均至少为2&#xff09;是否满足&#xff1a;数m为数n可分解的最小质因数&#xff08;数n可分解的最小质因数为整除n的最小质数&#xff09; 提示&#xff1a;判定m为质数且m是n的最小因数 #include <stdio.h> #include…

算法打卡day1|数组篇|Leetcode 704.二分查找、27.移除元素

数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合&#xff0c;可以方便的通过下标索引的方式获取到下标下对应的数据。 1.数组下标都是从0开始的。 2.数组内存空间的地址是连续的。 正是因为数组的在内存空间的地址是连续的&#xff0c;所以我们在删除或者增添…

Visual Studio 打开.edmx文件不显示表并报错:没有可用于.edmx的编辑器

打开.edmx文件时&#xff0c;呈现的是xml视图&#xff0c;不显示Diagram视图&#xff0c;且弹出报错“没有可用于.edmx的编辑器” 解决方案&#xff1a;在.edmx文件上右键&#xff0c;选择ado.net entity data model designer&#xff0c;即可正常显示表

mysql-MVCC

一、基础概念 1. MVCC的含义 MVCC (Multiversion Concurrency Control)&#xff0c;即多版本并发控制技术&#xff0c;它是通过读取某个时间点的快照数据&#xff0c; 来降低并发事务冲突而引起的锁等待&#xff0c; 从而提高并发性能的一种机制. MVCC 的实现,是通过保存数据…

N种方法解决1(CTF)

这里遇到的问题&#xff1a;一开始采用的base64解码平台有问题&#xff1b;默认解密出的格式为GBK格式&#xff1b;直接复制粘贴发现无法还原图片&#xff1b;又尝试了其他编码的&#xff1b;发现只有hex格式可以保证图片正常还原&#xff1b; 图片是以二进制存储的&#xff1…

响应式页面兼容移动端

文章目录 1. 响应式开发1.1 原理1.2 响应式容器 2. Bootstrap前端开发框架2.1 Bootstrap介绍(1) 优点(2) 版本 2.2 Bootstrap使用2.3 布局容器(1) container类(2) container-fluid类 3.Bootstrap栅格系统3.1 介绍3.2 栅格选项参数3.3 列嵌套3.4 列偏移3.5 列排序3.6 响应式工具…

Android14之input高级调试技巧(一百八十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【Python笔记-设计模式】享元模式

一、说明 享元模式是一种结构型设计模式&#xff0c;它摒弃了在每个对象中保存所有数据的方式&#xff0c;通过共享多个对象所共有的相同状态&#xff0c;让你能在有限的内存容量中载入更多对象。 (一) 解决问题 旨在减少大量相似对象创建时的内存开销 (二) 使用场景 大量…

C++的STL常用算法->常用遍历算法、常用查找算法、常用排序算法、常用拷贝和替换算法、常用算术生成算法、常用集合算法

#include<iostream> using namespace std; #include <algorithm> #include <vector> //常用遍历算法 for_each //普通函数 void print01(int val) { cout << val << " "; } //仿函数 //函数对象 class print02 { public: v…

第 2 章 ROS通信机制_通信机制实操(自学二刷笔记)

重要参考&#xff1a; 课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ 讲义链接:Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 2.5.1 实操01_话题发布 需求描述&#xff1a;编码实现乌龟运动控制&#xff0c;让小乌龟做圆周运动。 结果演…

前端工程化面试题 | 16.精选前端工程化高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

微信小程序 uniapp+vue餐厅美食就餐推荐系统

本论文根据系统的开发流程以及一般论文的结构分为三个部分&#xff0c;第一个部分为摘要、外文翻译、目录&#xff1b;第二个部分为正文&#xff1b;第三个部分为致谢和参考文献。其中正文部分包括&#xff1a; &#xff08;1&#xff09;绪论&#xff0c;对课题背景、意义、目…

nodejs:nrm(npm的镜像源管理器)

nrm&#xff08;Npm Registry Manager&#xff09;是一个用于快速切换和管理Node.js包管理器npm的镜像源&#xff08;registry&#xff09;的工具。 通过nrm&#xff0c;开发者可以轻松查看当前使用的npm源、添加新的镜像源、测试不同镜像源的速度&#xff0c;并在多个镜像源之…

pdffactory pro 8中文破解版

详细介绍 PdfFactory&#xff0c;PDF文档虚拟打印机&#xff0c;无须Acrobat即可创建Adobe PDF文件&#xff0c;创建PDF文件的方法比其他方法更方便和高效。支持将多个文档整合到一个PDF文件、增加字体和便签、PDF加密、去水印、压缩优化。 FinePrint&#xff0c;Windows虚拟…

mysql json数据模糊查询

场景&#xff1a;当一个列是json字符串时&#xff0c;想模糊查询json字符串中某个字段。 mysql5.7版本已经有了json数据类型&#xff0c;并且有了处理json数据类型的函数。具体看下面的文档地址。这里只说当需要对json中某个字段模糊查询时该怎么写。可以直接用 like的模糊查询…

【DDD】学习笔记-领域模型与数据模型

领域模型与数据模型 领域驱动的设计模型最重要的概念就是聚合&#xff0c;同时&#xff0c;聚合还要受到限界上下文边界的控制。Eric Evans 之所以要引入限界上下文&#xff0c;其中一个重要原因就是因为我们“无法维护一个涵盖整个企业的统一模型”&#xff0c;于是需要限界上…

!!!Python虚拟环境改名后的坑!!!!

搞了一晚上终于弄好这python虚拟环境的问题了&#xff01;真的是坑啊&#xff01; 本来用的纯python环境下的虚拟环境&#xff0c;一时心血来潮&#xff0c;把电脑重新装了一遍&#xff0c;虚拟环境的目录也改了一下&#xff0c;结果虚拟环境再vscode中是可以使用&#xff0c;…

Llama2模型的优化版本:Llama-2-Onnx

Llama2模型的优化版本&#xff1a;Llama-2-Onnx。 Llama-2-Onnx是Llama2模型的优化版本。Llama2模型由一堆解码器层组成。每个解码器层&#xff08;或变换器块&#xff09;由一个自注意层和一个前馈多层感知器构成。与经典的变换器相比&#xff0c;Llama模型在前馈层中使用了不…