数据价值在线化丨TiDB 在企查查数据中台的应用及 v7.1 版本升级体验

news2024/12/26 23:10:03

本文介绍了企查查在数据中台建设中使用 TiDB 的经验和应用。通过从 MySQL 到 TiDB 的迁移,企查查构建了基于 TiDB+ Flink 的实时数仓框架 ,充分利用了 TiDB 的分布式架构、MySQL 兼容性和完善的周边工具等特性,实现了数据的在线化处理。2023 年 9 月,企查查的 TiDB 数据库已升级至 v7.1.1 版本。文章还分享了企查查在使用 TiDB 过程中的一些好用特性和版本升级经验,包括 TiDB 开源社区的活跃以及 TiDB 的稳定性对其决策的重要性。

本文作者赵河、王云鹤, 企查查大数据架构部 DBA 团队。


企查查是一家专注于企业信用信息服务的科技公司,依托大数据、人工智能等技术,为企业提供全面、准确、及时的企业信用信息,助力企业降本增效、风险防控。2023 年 5 月,企查查正式发布全球首款商查大模型——“知彼阿尔法”。该模型基于企查查覆盖的全球企业信用数据进行训练,可以为司法、金融、风控、政务等人士提供多维度数据服务。

从 MySQL 到 TiDB 的升级之路

数据是企查查业务的核心,需要对海量数据进行清洗、分析、挖掘,才能充分释放数据价值。在引入 TiDB 之前,企查查使用 MySQL 数据库。MySQL 是一款受欢迎的开源关系型数据库,但存在单机性能瓶颈。当数据量达到一定规模后,垂直扩容只能有限提升性能,在高并发写入和复杂 SQL 查询等场景下,性能会受到单机性能的限制。

由于 MySQL 是单机数据库,在业务不中断的情况下,只能采用热备。但是,随着数据量的增长,MySQL 的热备操作会变得越来越慢,对数据库的性能产生较大影响。此外,热备数据的恢复速度也较慢。在企查查的数据流向中,爬虫采集到的数据需要先存储到数据库中,然后再由 Flink 进行清洗。由于 MySQL 不支持将数据直接投递到 Flink,因此需要通过 Flink 来读写数据库,这对 MySQL 库产生了较大的压力。

2019 年底,我们通过 TiDB 社区接触到 TiDB,并对其产生了浓厚的兴趣。经过对比选型测试,我们选择了 TiDB 数据库,结合 Flink 场景的需求,构建了 Flink+TiDB 的实时数仓框架,应用于企查查数据中台。我们选择 TiDB 的主要原因有:

 切换到 TiDB 几乎无任何学习成本

因为 MySQL 存在的诸多问题,我们迫切需要寻找一种兼容 MySQL 协议、且能解决上述问题的数据库。TiDB 在 MySQL 兼容性方面表现出色,能够兼容绝大多数 MySQL 语法和函数,包括 MySQL 生态的相关工具也都默认支持。此外,TiDB 在使用体验上与 MySQL 几乎没有差异,对于我们这些 MySQL 基础的 DBA 来说,切换到 TiDB 几乎不需要学习成本,非常亲切。

 原生分布式架构带来明显优势

在兼容 MySQL 协议的前提下,我们需要一款能灵活水平扩展的分布式数据库满足业务发展的要求。我们当时对分库分表类的分布式数据库进行了对比测试,发现对应用的开发侵入很大,且扩展性受限。TiDB 采用原生分布式数据库架构,基于 Spanner 和 F1 的论文设计。TiDB 的存储和计算分离,无中心化节点,支持任意扩缩容,支持分布式事务。此外,TiDB 的数据存储基于 Raft 共识算法,数据分片无需业务事先规划分片键,默认 3 个副本,保证了数据的高可用。TiDB 集群中的每个组件都做到了高可用设计,保证了服务的高可用。

 周边工具完善

TiDB 的周边工具非常优秀,尤其是监控体系。TiDB 的监控体系采用了 Prometheus + Grafana + Alertmanager 等通用组件设计,这使得 TiDB 的监控体系能够无缝融入到我们企业的监控告警体系中,非常方便。此外,TiDB 的监控体系非常全面,覆盖了系统运行中的各个环节,便于排查问题。TiDB 的上下游数据迁移和同步工具也比较成熟,特别是 TiCDC 工具。TiCDC 支持将 TiDB 中的数据同步到 Kafka 中,且支持 commitTS 的特性,保证了数据的一致性。TiDB 的备份和恢复工具也比较全面,支持逻辑备份(dumpling)和物理备份(BR),且不需要中断业务。在备份过程中,TiDB 可根据分布式节点的能力并行执行备份任务,效率相较 MySQL 单机备份大幅提升。

 开源社区活跃

TiDB 的社区论坛非常的活跃,我们提的问题很快就会得到其他成员的回复。社区每隔几分钟就有人提出问题或回复问题。此外,还有许多技术爱好者撰写了博客和技术文章,这对我们日常解决 TiDB 技术问题非常有帮助。我们还参加了 TiDB 社区的线下活动。大家踊跃发言,分享使用 TiDB 过程中的经验和遇到的问题。TiDB 社区组织者也能很好地记录问题并采纳开发者的建议。这种开放透明的社区互动,让我们感到使用 TiDB 很放心。

 大数据生态友好

业务写入到数据库中的数据需要经过 Flink 进行清洗。TiDB 大数据的开源生态协同比较好,这也为我们使用 TiCDC 提供了便利。通过 TiCDC 将 TiDB 的数据同步到 kafka 中,一方面方便 Flink 进行清洗;另一方面,其他下游的数据平台可以从 kafka 中消费数据,方便灵活。

TiDB 在数据中台系统的应用

TiDB 应用于企查查数据中台系统,覆盖了从数据采集到数据清洗整个流程,提供数据的存储和查询。我们将原来的 20 多套 MySQL 数据库,替换成现在的 2 套 TiDB 集群。在数据清洗流程中,我们使用 TiDB 自带的数据同步工具 TiCDC 将数据同步到下游其他的数据库和 kafka 中。目前,同步的表累计近千张。数据采集到数据清洗的数据流转,则是通过 TiCDC 捕捉变更数据同步到 Kafka 中实现的。此外,我们使用了 TiCDC 中的 CommitTs 特性,通过数据在下游更新前的乐观锁控制,保证数据的一致性。

企查查数据中台系统逻辑示意图

TiDB 数据入湖使用了自研的 Flink Hybird Source。全量分片数据通过查询 TiDB 获取,增量数据通过消费 TiCDC 推送到 Kafka 的 Changelog 获取,准实时(分钟级)写入到 数据湖 Iceberg 中。Flink Hybird Source 支持全量、增量、和全增量一体三种数据同步模式。

我们将 TiDB 的部分数据同步到 ES 系统中,为 ES 系统提供数据来源,供一些检索场景的应用使用。对于离线数据,我们使用 Chunjun/Seatunnel 同步工具将其同步到 Hive 离线数据平台中,供下游的离线数据平台跑批。目前,我们正在调研 TiFlash 的功能,计划今年将部分复杂的离线查询从 Hive 迁移到 TiDB 中,直接从 TiDB 中查询,以减少数据在多个数据栈中流转,进一步提升数据的实时性。

应用价值

1 数据价值在线化

TiDB 集群的分布式读写能力远超 MySQL,无论是从源端的爬虫写入 TiDB,还是 Flink 清洗后的数据写入,TiDB 都能够满足业务需求。结合 Flink 的实时计算能力,TiDB 可以保证数据的实时性。此外,TiDB 各节点并行读取数据的能力,大大提升了数据的分发查询能力,让数据价值得以在线化。

2 数据流转效率提升

TiDB 与上下游的数据生态兼容性良好,在接入端支持标准的 JDBC 写入,源端的数据可以直接写入到 TiDB,就像写 MySQL 一样简单。在出口端,TiDB 既可以通过 TiCDC 将数据分发到下游的 Kafka,并通过 CommitTS 特性保证业务数据的一致性,也可以通过标准接口将数据同步到下游的大数据平台,提高了企业数据的流转效率,盘活了数据资产。

使用心得

1 分享几个好用的特性

 Resource Control 满足不同业务的多租户需求

TiDB 7.1 版本引入了 Resource Control(资源管控)特性,我们迅速升级到该版本。在升级后,我们对查询平台中的正常程序账号不进行资源管控,以保证其资源得到保障;非程序账号进行部分资源管控,以防止其过多的消耗资源影响正常程序账号的查询效率。这样,我们将不同类型的业务整合到一个 TiDB 集群中,提升了资源利用率,降低了 30% 的投入成本。此外,TiDB 的资源管控功能提供了多视角的监控,可以清晰地了解各个业务模块的资源使用情况。

 gc 任意时间点内恢复

我们将 TiDB 的 GC 时间设置为 28 小时,可以读取过去 28 小时的历史数据。同时,如果发生误删除操作,我们可以将 28 小时内的数据进行闪回恢复。与 MySQL binlog 恢复相比,这种方式的恢复效率更高。

 热点自动调度

在 TiDB 3.0 和 4.0 版本中,当遇到热点问题时,TiDB 的处理能力不足,无法自动调度,需要人工干预。升级到 TiDB 7.1 版本后,热点调度能力得到了大幅提升,可以自动调度热点数据,有效解决了热点问题。

2 版本升级有感

2020 年 9 月,我们将 TiDB 升级到 v4.0.6,后续升级到 v4.0.15。在 v4.0 版本中,我们遇到了一些问题,包括:删除大量数据后引发的 TiDB 重启、DDL 阻塞以及 TiCDC 不太成熟出现的问题。在该阶段,我们遇到问题时,优先在 TiDB 社区寻求答案。社区中很多经验丰富的用户和开发者提供了帮助。我们也积极参与社区的讨论,分享自己的经验,为社区做出贡献。2023 年 8 月,我们跨大版本升级到 v6.5.3。在 v6.5 版本中,上述问题均得到了解决。感受最深的是 TiCDC 的稳定性和 TiDB 重启问题得到了改进,性能也得到了很大提升。

2023 年 9 月,我们跨大版本升级到 TiDB v7.1.1。升级后,系统性能得到了大幅提升,QPS 峰值达到 50-60K,95 线响应时间从之前的 60ms 以上降低至 10-30ms。同时,我们也使用上了 v7.1 的资源管控功能,很好地满足了业务需求。在 v7.1 版本中,我们遇到了两个问题。

 由于 TiDB 的内存控制参数由会话级别调整为 SQL 级别,导致超过内存阈值引起访问阻塞的问题。我们正在积极寻求解决方案。

 TiCDC partition_num 参数无效的问题(参考:Tidb7.1.1 的 Ticdc 参数 partition-num 无效 ( https://asktug.com/t/topic/1014870 ) ),我们已经将该问题反馈给 TiDB 社区,并很快得到反馈,在 issue : 9955 ( https://github.com/pingcap/tiflow/pull/9955 ) 得到修复。

这些问题的解决,充分体现了 TiDB 开源模式的优势,即社区的力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1467421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

构建生物医学知识图谱from zero to hero (3):生物医学命名实体识别和链接

生物医学实体链接 🤓现在是激动人心的部分。对于NLP和命名实体识别和链接的新手,让我们从一些基础知识开始。命名实体识别技术用于检测文本中的相关实体或概念。例如,在生物医学领域,我们希望在文本中识别各种基因、药物、疾病和其他概念。 生物医学概念提取 在这个例子中…

C++入门学习(三十六)函数的声明

程序是自上而下运行的&#xff0c;比如我下面的代码&#xff1a; #include <iostream> #include<string> using namespace std;int main() { int a1; int b2;int sumaddNumbers(a,b); cout<<sum;return 0; }int addNumbers(int a, int b) { int sum …

一种基于javax.max注解的能力增强技术

目录 现有框架的不足之处 我的改进内容 改进的成果 现有框架的不足之处 Max是javax.validation包中的一个常用注解&#xff0c;用于对传入参数进行最大值校验。但是其校验区间为闭区间&#xff0c;且不支持修改&#xff0c;如&#xff1a;Max(2)&#xff0c;表示表示传入参…

Debug|百度OCR识别错误error_code: 216205

1. 什么错误 在使用百度OCR识别时遇到了错误error_code: 216205。 参照文档【百度OCR文字识别 - API文档 - 错误码】中的描述&#xff0c;是我的图片转base64后大于10M 测试两张图片&#xff1a;923k图片的Base64 大于 10M&#xff1b;2M图片的Base64 小于 10M。 # 电脑上看…

抖音视频下载工具|视频内容提取软件

引言部分&#xff1a; 针对抖音视频下载需求&#xff0c;我们团队自豪推出一款功能强大的工具&#xff0c;旨在解决用户获取抖音视频繁琐问题的困扰。我们通过基于C#开发的工具&#xff0c;让用户能够轻松通过关键词搜索实现自动批量抓取视频&#xff0c;并根据需求进行选择性批…

yolov8-seg dnn调用

接上篇一直更换torch、opencv版本都无法解决这个问题&#xff08;seg调用dnn报错&#xff09;。那问题会不会出在yolov8源码本身呢。yolov8的讨论区基本都看过了&#xff0c;我决定尝试在其前身yolov5的讨论区上找找我不信没人遇到这个问题。很快找到下面的讨论第一个帖子&…

Node.JS入门(day01)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学&#xff0c;可以点心心支持一下哈 一、为什么要学习Node.JS ①可以让其他人访问我们编写的网页 ②为后续的框架学习打基础 二、Node.JS是什么 官方&#xff1a;Node.js是一个…

8.qt5使用opencv的库函数打开图片

1.配置opencv动态库的环境变量 2.在创建的qt工程中加入如下opencv代码&#xff0c;具体代码如下&#xff1a; 使用opencv库函数显示图片

编写LLVM Pass的一个小问题

在阅读官方文档时发现一个很有趣的细节&#xff0c;官方给出了一个测试用例&#xff0c;此处有一个小问题&#xff08;%无法复制&#xff09;。但是我在使用自己编译的ll文件时&#xff0c;我发现该pass无法正常使用。最后经过测试发现是利用-O0编译产生的ll文件有optnone的fla…

数据库管理-第154期 Oracle Vector DB AI-06(20240223)

数据库管理154期 2024-02-23 数据库管理-第154期 Oracle Vector DB & AI-06&#xff08;20240223&#xff09;1 环境准备创建表空间及用户TNSNAME配置 2 Oracle Vector的DML操作创建示例表插入基础数据DML操作UPDATE操作DELETE操作 3 多Vector列表4 固定维度的向量操作5 不…

【达梦数据库】数据库的方言问题导致的启动失败

问题场景 在项目中采用了hibernate &#xff0c;连接数据库原本为ORACLE&#xff0c;后续打算改造为国产数据库 达梦 链接配置&#xff1a; # 达梦写法&#xff0c; index:driver-class-name: dm.jdbc.driver.DmDriverjdbc-url: jdbc:dm://192.168.220.225:5236/IDX4username:…

深入探索pdfplumber:从PDF中提取信息到实际项目应用【第94篇—pdfplumbe】

深入探索pdfplumber&#xff1a;从PDF中提取信息到实际项目应用 在数据处理和信息提取的过程中&#xff0c;PDF文档是一种常见的格式。然而&#xff0c;要从PDF中提取信息并进行进一步的分析&#xff0c;我们需要使用适当的工具。本文将介绍如何使用Python库中的pdfplumber库来…

危险!Wyze 摄像头安全漏洞致1.3万用户隐私遭窥探

最近&#xff0c;一则关于 Wyze 摄像头再次出现安全漏洞的新闻引起了人们的广泛关注。据报道&#xff0c;该安全漏洞导致约1.3万用户的摄像头受到了未经授权的访问&#xff0c;使得这些用户的隐私信息遭到了窥视。这一事件再次引发了人们对网络安全的关注和讨论。 网络安全不仅…

老杨说运维 | 运维大数据价值探索

文末附有视频 伴随第六届双态IT乌镇用户大会的圆满完成&#xff0c;擎创科技“一体化数智管理和大模型应用”主题研讨会也正式落下了帷幕。 云原生转型正成为很多行业未来发展战略&#xff0c;伴随国家对信创数字化要求的深入推进&#xff0c;面对敏稳共存这一近年出现的新难…

svn客户端下载、安装、使用

下载、使用 打开360软件管家&#xff0c;选怎宝库&#xff0c;搜索svn&#xff0c;点击安装 可以修改安装路径 使用 在桌面右键弹出菜单&#xff0c;点击 输入地址&#xff0c;点击ok 输入用户名、密码 &#xff0c;等待检出完成

Linux 可视化管理-webmin 和 bt 运维工具安装教程

Linux 可视化管理-webmin 和 bt 运维工具安装教程 webmin webmin 是功能强大的基于 Web 的 Unix/linux 系统管理工具。管理员通过浏览器访问 Webmin 的各种管理功能并完成相应的管理操作。除了各版本的 linux 以外还可用于&#xff1a;AIX、HPUX、Solaris、Unixware、Irix 和…

Linux学习方法-框架学习法——Linux应用程序编程框架

配套视频学习链接&#xff1a;https://www.bilibili.com/video/BV1HE411w7by?p4&vd_sourced488bc722b90657aaa06a1e8647eddfc 目录 Linux应用程序编程 Linux应用程序编程 Linux文件I/O(input/output) Linux文件I/O(五种I/O模型) Linux多进程 Linux多线程 网络通信(s…

游戏空间划分技术

一、 前言 空间划分算法有很多&#xff0c;比如均匀网格&#xff0c;四/八叉树&#xff0c;k-d树&#xff0c;Bsp树&#xff0c;每一种算法都有自己的优缺点&#xff0c;我们需要从理论上理解这些算法&#xff0c;然后在实际项目中进行灵活的运用。 游戏中经常使用空间划分算…

【深度学习】Pytorch 系列教程(七):PyTorch数据结构:2、张量的数学运算(5):二维卷积及其数学原理

文章目录 一、前言二、实验环境三、PyTorch数据结构1、Tensor&#xff08;张量&#xff09;1. 维度&#xff08;Dimensions&#xff09;2. 数据类型&#xff08;Data Types&#xff09;3. GPU加速&#xff08;GPU Acceleration&#xff09; 2、张量的数学运算1. 向量运算2. 矩阵…

TESTLINK 测试用例数据结构解析

一、node_types 测试组件信息表 我们查询表 select * from testlink.node_types; 得到如下结果 二、nodes_hierarchy 测试用例目录层次表 我们以下图的项目为例&#xff0c;来讲解 1、测试项目 首先&#xff0c;我们有个Train的项目&#xff0c;存在表testprojects中&#…