事务
今天的文章里,我会以 InnoDB 为例,剖析 MySQL 在事务支持方面的特定实现,并基于原理给出相应的实践建议,希望这些案例能加深你对 MySQL 事务原理的理解。
说到事务,银行应用是解释事务必要性的一个经典例子,假设一个银行的数据库有两张表:支票(checking)表和储蓄(savings)表。现在要从用户 Jane 的支票账户转移 200 美元到她的储蓄账户,那么需要至少三个步骤:
- 检查支票账户的余额高于 200 美元。
- 从支票账户余额中减去 200 美元。
- 在储蓄账户余额中增加 200 美元。
上述三个步骤的操作必须打包在一个事务中,任何一个步骤失败,则必须回滚所有的步骤。
可以用 START TRANSACTION 语句开始一个事务,然后要么使用 COMMIT 提交事务将修改的数据持久保留,要么使用 ROLLBACK 撤销所有的修改。事务 SQL 的样本如下:
mysql> START TRANSACTION;
mysql> SELECT balance FROM checking WHERE customer_id = 1;
mysql> UPDATE checking SET balance = balance - 200.00 WHERE customer_id = 1;
mysql> UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 1;
mysql> COMMIT;
试想一下,如果执行到第四条语句时服务器崩溃了,会发生什么?天知道,用户可能会损失 200 美元。再假如,在执行到第三条语句和第四条语句之间时,另外一个进程要删除支票账户的所有余额,那么结果可能是银行在不知道这个逻辑的情况下白白给了 Jane 200 美元。
简单来说,事务就是要保证一组数据库操作,要么全部成功,要么全部失败。在 MySQL 中,事务支持是在引擎层实现的。
一个运行良好的事务处理系统,必须具备 ACID 这些标准特征。ACID 表示原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)。
- 原子性(atomicity):一个事务必须被视为一个不可分割的最小工作单元,整个事务中的所有操作要么全部提交成功,要么全部失败回滚,对于一个事务来说,不可能只执行其中的一部分操作,这就是事务的原子性。
- 一致性(consistency):数据库总是从一个一致性的状态转换到另外一个一致性的状态。在前面的例子中,一致性确保了,即使在执行第三、四条语句之间时系统崩溃,支票账户中也不会损失 200 美元,因为事务最终没有提交,所以事务中所做的修改也不会保存到数据库中。
- 隔离性(isolation):通常来说,一个事务所做的修改在最终提交以前,对其他事务是不可见的。在前面的例子中,当执行完第三条、第四条语句还未开始时,此时有另外一个账户汇总程序开始运行,则其看到的支票账户的余额并没有被减去 200 美元。后面我们讨论隔离级别(Isolation level)的时候,会发现为什么我们要说“通常来说”是不可见的。
- 持久性(durability):一旦事务提交,则其所做的修改就会永久保存在数据库中。此时即使系统崩溃,修改的数据也不会丢失。持久性是个有点模糊的概念,因为实际上持久性也分很多不同的级别。有些持久性策略能够提供非常强的安全保障,而有些则未必。而且不可能有能做到 100% 的持久性保证的策略(如果数据库本身就能做到真正的持久性,那么备份又怎么能增加持久性呢)。在后面其他文章,我们会继续讨论 MySQL 中持久性的真正含义。
隔离级别
在 SQL 标准中定义了四个隔离级别,每一种级别都规定了一个事务中所做的修改,哪些在事务内和事务间是可见的,哪些是不可见的。较低级别的隔离通常可以执行更高的并发,系统的开销也更低。
下面简单介绍一下四种隔离级别:
- READ UNCOMMITTED(读未提交):最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
- READ COMMITTED(读提交):允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
大多数数据库系统的默认隔离级别都是 READ COMMITTED,如 Oracle。
- REPEATABLE READ(可重复读):对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
- SERIALIZABLE(串行化):最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
隔离级别 | 脏读 | 不可重复读 | 幻读 | 加锁读 |
---|---|---|---|---|
READ UNCOMMITTED | √ | √ | √ | × |
READ COMMITTED | × | √ | √ | × |
REPEATABLE READ | × | × | √ | × |
SERIALIZABLE | × | × | × | √ |
MySQL InnoDB 存储引擎默认的事务隔离级别就是 REPEATABLE-READ(可重复读)。
你可以用 show variables 来查看当前的值。
mysql> show variables like 'transaction_isolation';
+-----------------------+----------------+
| Variable_name | Value |
+-----------------------+----------------+
| transaction_isolation | READ-COMMITTED |
+-----------------------+----------------+
注:MySQL InnoDB 存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)解决了幻读的问题。
事务隔离的实现
理解了事务的隔离级别,我们再来看看事务隔离具体是怎么实现的。这里我们展开说明“可重复读”。
在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。
假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。
当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的 多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到。
同时你会发现,即使现在有另外一个事务正在将 4 改成 5,这个事务跟 read-view A、B、C 对应的事务是不会冲突的。
你一定会问,回滚日志总不能一直保留吧,什么时候删除呢?答案是,在不需要的时候才删除。也就是说,系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。
什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的 read-view 的时候。
基于上面的说明,我们来讨论一下为什么建议你尽量不要使用长事务。
长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。
在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。我见过数据只有 20GB,而回滚段有 200GB 的库。最终只好为了清理回滚段,重建整个库。
除了对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库,这个我们会在后面讲锁的时候展开。
事务的启动方式
如前面所述,长事务有这些潜在风险,我当然是建议你尽量避免。其实很多时候业务开发同学并不是有意使用长事务,通常是由于误用所致。MySQL 的事务启动方式有以下几种:
- 显式启动事务语句, begin 或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
- set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。
有些客户端连接框架会默认连接成功后先执行一个 set autocommit=0 的命令。这就导致接下来的查询都在事务中,如果是长连接,就导致了意外的长事务。
因此,我会建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。
但是有的开发同学会纠结“多一次交互”的问题。对于一个需要频繁使用事务的业务,第二种方式每个事务在开始时都不需要主动执行一次 “begin”,减少了语句的交互次数。如果你也有这个顾虑,我建议你使用 commit work and chain 语法。
在 autocommit 为 1 的情况下,用 begin 显式启动的事务,如果执行 commit 则提交事务。如果执行 commit work and chain,则是提交事务并自动启动下一个事务,这样也省去了再次执行 begin 语句的开销。同时带来的好处是从程序开发的角度明确地知道每个语句是否处于事务中。
你可以在 information_schema 库的 innodb_trx 这个表中查询长事务,比如下面这个语句,用于查找持续时间超过 60s 的事务。
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60
小结
这篇文章里面,我介绍了 MySQL 的事务隔离级别的现象和实现,根据实现原理分析了长事务存在的风险,以及如何用正确的方式避免长事务。希望我举的例子能够帮助你理解事务,并更好地使用 MySQL 的事务特性。