C# OpenCvSharp DNN Image Retouching

news2025/1/17 3:14:01

目录

介绍

模型

项目

效果

代码

下载


C# OpenCvSharp DNN Image Retouching

介绍

github地址:https://github.com/hejingwenhejingwen/CSRNet

(ECCV 2020) Conditional Sequential Modulation for Efficient Global Image Retouching

模型

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 360, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 360, 640]
---------------------------------------------------------------

项目

效果

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;

        int inpHeight;
        int inpWidth;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/csrnet_360x640.onnx";

            inpHeight = 360;
            inpWidth = 640;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            image_path = "test_img/0014.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            int srch = image.Rows;
            int srcw = image.Cols;


            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* pdata = (float*)outs[0].Data;
            int out_h = outs[0].Size(2);
            int out_w = outs[0].Size(3);
            int channel_step = out_h * out_w;
            float[] data = new float[channel_step * 3];
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = pdata[i] * 255;

                if (data[i] < 0)
                {
                    data[i] = 0;
                }
                else if (data[i] > 255)
                {
                    data[i] = 255;
                }
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(data, temp_r, out_h * out_w);
            Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}
 

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;

        int inpHeight;
        int inpWidth;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/csrnet_360x640.onnx";

            inpHeight = 360;
            inpWidth = 640;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            image_path = "test_img/0014.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            int srch = image.Rows;
            int srcw = image.Cols;


            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* pdata = (float*)outs[0].Data;
            int out_h = outs[0].Size(2);
            int out_w = outs[0].Size(3);
            int channel_step = out_h * out_w;
            float[] data = new float[channel_step * 3];
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = pdata[i] * 255;

                if (data[i] < 0)
                {
                    data[i] = 0;
                }
                else if (data[i] > 255)
                {
                    data[i] = 255;
                }
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(data, temp_r, out_h * out_w);
            Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1458708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

steam搬砖项目真的假的,2024年到底还能不能做?

2024年steam搬砖项目到底还能不能做&#xff0c;很多小伙伴比较关注国外steam搬砖项目&#xff0c;那steam搬砖到底需要什么东西就可以启动&#xff1f;它被很多人吹得天花乱坠&#xff0c;神神秘秘&#xff0c;高深莫测。甚至还有人说steam搬砖需要特定的环境和国外手机。 st…

【PX4-AutoPilot教程-TIPS】PX4控制无人机在Gazebo中飞行时由于视角跟随无人机在画面中心导致视角乱晃的解决方法

PX4控制无人机在Gazebo中飞行时由于视角跟随无人机在画面中心导致视角乱晃的解决方法 问题描述解决方法 问题描述 无人机在Gazebo中飞行时&#xff0c;无人机始终处于画面中央&#xff0c;会带着视角乱晃&#xff0c;在Gazebo中进行任何操作视角都无法固定。 观察Gazebo左侧Wo…

学习如何在js中指定按照数组中某一个值排序sort方法

学习如何在js中指定按照数组中某一个值排序sort方法 定义和用法排序数组按升序对数组中的数字进行排序按降序对数组中的数字进行排序获取数组中的最小值获取数组中的最大值获取数组中的最大值按字母顺序对数组进行排序&#xff0c;然后反转排序项的顺序&#xff08;降序&#x…

植隆业务中台和金蝶云星空单据接口对接

植隆业务中台和金蝶云星空单据接口对接 源系统:金蝶云星空 金蝶K/3Cloud在总结百万家客户管理最佳实践的基础上&#xff0c;提供了标准的管理模式&#xff1b;通过标准的业务架构&#xff1a;多会计准则、多币别、多地点、多组织、多税制应用框架等&#xff0c;有效支持企业的运…

LeetCode 热题 100 | 二叉树(中下)

目录 1 基础知识 1.1 队列 queue 1.2 栈 stack 1.3 常用数据结构 1.4 排序 2 98. 验证二叉搜索树 3 230. 二叉搜索树中第 K 小的元素 4 199. 二叉树的右视图 菜鸟做题忘了第几周&#xff0c;躺平过了个年TT 1 基础知识 1.1 队列 queue queue<type> q…

Avalonia 初学笔记(1):环境配置

文章目录 相关链接前言Avalonia 官方文档Avalonia 环境配置我的本地环境下载Visual Studio Avalonia 插件 Avalonia 新建项目平台选择新建项目平台选择设计器选择扩展选择最终选择 默认项目运行 Avalonia 官方Demo总结 相关链接 Avalonia学习笔记 CSDN博客专栏 前言 最近想了解…

DAY55:动态规划(买卖股票的最佳时机3)

Leetcode: 309 最佳买卖股票时机含冷冻期 这道题比上面状态更多&#xff0c;是因为卖出股票后&#xff0c;你无法在第二天买入股票 (即冷冻期为1天)。 状态 状态一&#xff1a;持有股票状态&#xff08;今天买入股票&#xff0c;或者是之前就买入了股票然后没有操作&#xf…

SQL查询转化为 Elasticsearch 查询

使用SQL 转化为查询 Elasticsearch 支持 sql 语句转化为 elasticsearch 的 查询语句 第一步&#xff1a; 打开在线转换工具的网页&#xff0c;进入工具页面 第二步&#xff1a;在指定的输入框中输入需要转换的 sql 语句。 您学会了这么简单的办法

什么是 Wake-on-LAN?如何使用 Splashtop 远程喊醒电脑

在当今数字互联的世界里&#xff0c;远程访问电脑已不仅仅是一种便利&#xff0c;而是许多人的需要。无论是远程工作、IT 支持&#xff0c;还是管理整个网络中的计算机群&#xff0c;我们都必须掌握正确的工具和技术。 其中一项在远程访问中发挥关键作用的技术是 Wake-on-LAN …

AI:133-基于深度学习的工业质检自动化

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

大数据信用报告查询方式一般有几种?哪种比较好?

在了解这个问题之前&#xff0c;想必你对大数据信用与人行信用的区别都是比较清楚了&#xff0c;本文呢就着重讲一下大数据信用报告查询方式有几种&#xff0c;哪种比较好&#xff0c;感兴趣的朋友不妨一起去看看。 大数据信用报告常见的三种查询方式&#xff1a; 一、二维码分…

SG-8201CJA(汽车可编程晶体振荡器)

爱普生的SG-8021CJA是一款符合AEC-Q100标准的晶体振荡器&#xff0c;专为要求苛刻的汽车/ADAS应用&#xff08;如激光雷达和相机ECU&#xff09;而设计。它采用爱普生的内部低噪声小数NPLL&#xff0c;输出 频率高达170MHz&#xff0c;相位抖动小于1/25&#xff0c;稳定性比之前…

SpringBoot+WebSocket实现即时通讯(二)

前言 紧接着上文《SpringBootWebSocket实现即时通讯&#xff08;一&#xff09;》 本博客姊妹篇 SpringBootWebSocket实现即时通讯&#xff08;一&#xff09;SpringBootWebSocket实现即时通讯&#xff08;二&#xff09;SpringBootWebSocket实现即时通讯&#xff08;三&…

【教3妹学编程-算法题】相同分数的最大操作数目 II

3妹&#xff1a;2哥&#xff0c;干嘛呢&#xff0c;怎么又在吃泡面 2哥 : 这不是过年下血本&#xff0c;给小侄子买了一个ps5吗&#xff0c; 哎&#xff0c;我自己都舍不得用&#xff0c;不能让人说咱小气不是。 3妹&#xff1a;神马&#xff0c;他才6岁吧&#xff0c; 就这么喜…

【4.1计算机网络】TCP-IP协议簇

目录 1.OSI七层模型2.常见协议及默认端口3.TCP与UDP的区别 1.OSI七层模型 osi七层模型&#xff1a; 1.应用层 2.表示层 3.会话层 4.传输层&#xff1a;TCP为可靠的传输层协议。 5.网络层 6.数据链路层 7.物理层 2.常见协议及默认端口 3.TCP与UDP的区别 例题1. 解析&#xff1…

APISIX 可观测性最佳实践

APISIX 介绍 Apache APISIX 是一个动态、实时、高性能的云原生 API 网关。它构建于 NGINX ngx_lua 的技术基础之上&#xff0c;充分利用了 LuaJIT 所提供的强大性能。 APISIX 主要分为两个部分&#xff1a; APISIX 核心&#xff1a;包括 Lua 插件、多语言插件运行时&#x…

2024年适合小白的副业—steam搬砖项目

对于普通人&#xff0c;找一个常年稳定&#xff0c;有个人全程带的项目难能可贵&#xff01; 别去想快速路&#xff0c;别去想挂机&#xff0c;作弊、别去想躺赚&#xff0c;否则最后又是竹篮打水一场空&#xff01;&#xff01; 普通人也可以靠steam搬砖项目这个翻身&#xf…

Net2FTP网站搭建并结合内网穿透实现远程访问本地个人文件

文章目录 1.前言2. Net2FTP网站搭建2.1. Net2FTP下载和安装2.2. Net2FTP网页测试 3. cpolar内网穿透3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 文件传输可以说是互联网最主要的应用之一&#xff0c;特别是智能设备的大面积使用&#xff0c;无论是个人…

psm的stata实现

1. PSM 简介 在经济学中&#xff0c;我们通常希望评估某项公共政策实施后的效应&#xff0c;为此&#xff0c;我们构建 "处理组" 和 "控制组" 以评估「处理效应 (treatment effect)」。然而&#xff0c;我们的数据通常来自非随机的观察研究中&#xff0c;处…

SpringBoot集成阿里云OSS、华为云OBS、七牛云、又拍云等上传案例【附白嫖方案】【附源码】

1. 项目背景 唉&#xff01;本文写起来都是泪点。不是刻意写的本文&#xff0c;主要是对日常用到的文件上传做了一个汇总总结&#xff0c;同时希望可以给用到的小伙伴带来一点帮助吧。 上传本地&#xff0c;这个就不水了&#xff0c;基本做技术的都用到过吧&#xff1b; 阿里…