基于yolov5算法的安全帽头盔检测|Pytorch开发+源码+模型
本期给大家打开的是YOLOv5在智能工地安全领域中头盔目标检测的应用。
完整代码下载地址:基于yolov5算法的安全帽头盔检测源码+模型
可视化界面演示:
💥💥💥新增可视化界面上线啦!!!!来一波演示!!!
演示
指标
yolov5s 为基础训练,epoch = 50
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.884 | 0.899 | 0.888 |
人体 | 0.846 | 0.893 | 0.877 |
头 | 0.889 | 0.883 | 0.871 |
安全帽 | 0.917 | 0.921 | 0.917 |
对应的权重文件:百度云,提取码: b981
yolov5m 为基础训练,epoch = 100
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.886 | 0.915 | 0.901 |
人体 | 0.844 | 0.906 | 0.887 |
头 | 0.9 | 0.911 | 0.9 |
安全帽 | 0.913 | 0.929 | 0.916 |
对应的权重文件:百度云,提取码: psst
yolov5l 为基础训练,epoch = 100
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.892 | 0.919 | 0.906 |
人体 | 0.856 | 0.914 | 0.897 |
头 | 0.893 | 0.913 | 0.901 |
安全帽 | 0.927 | 0.929 | 0.919 |
对应的权重文件:百度云,提取码: a66e
1.YOLO v5训练自己数据集教程
使用的数据集:Safety-Helmet-Wearing-Dataset ,感谢这位大神的开源数据集!
本文结合 YOLOv5官方教程 来写
环境准备
首先确保自己的环境:
Python>=3.7
Pytorch==1.5.x
PyQt5==5.15.3
PyQtChart==5.15.3
PyQt5-tools
GPUtil
或者使用我的环境(推荐)
pip install -r requirements.txt
官方权重
我已上传到一份到百度云:下载链接 , 密码: 44qm
训练自己的数据
提示:
关于增加数据集分类的方法,请看【5. 增加数据集的分类】
1.1 创建自己的数据集配置文件
因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml
文件,创建自己的数据集配置文件 custom_data.yaml
# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val
# number of classes
nc: 3
# class names
names: ['person', 'head', 'helmet']
1.2 创建每个图片对应的标签文件
你可以使用 data/gen_data/gen_head_helmet.py
来将VOC
的数据集转换成 YOLOv5
训练需要用到的格式。
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt
文件,其规范如下:
- 每一行都是一个目标
- 类别序号是零索引开始的(从0开始)
- 每一行的坐标
class x_center y_center width height
格式 - 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将
x_center
和width
除以图像宽度,将y_center
和height
除以图像高度。代码如下:
import numpy as np
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
生成的 .txt
文件放置的名字是图片的名字,放置在 label 文件夹中,例如:
./score/images/train/00001.jpg # image
./score/labels/train/00001.txt # label
生成的 .txt
例子:
1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374
1.3 文件放置规范
文件树如下
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nvidZNJ5-1672906394071)(./doc/File_tree.png)]
1.4 选择一个您需要的模型
在文件夹 ./models
下选择一个你需要的模型然后复制一份出来,将文件开头的 nc =
修改为数据集的分类数,下面是借鉴 ./models/yolov5s.yaml
来修改的
# parameters
nc: 3 # number of classes <============ 修改这里为数据集的分类数
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
1.5 开始训练
这里选择了 yolov5s
模型进行训练,权重也是基于 yolov5s.pt
来训练
python train.py --img 640 \
--batch 16 --epochs 10 --data ./data/custom_data.yaml \
--cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt
其中,yolov5s.pt
需要自行下载放在本工程的根目录即可,下载地址 官方权重
1.6 看训练之后的结果
训练之后,权重会保存在 ./runs
文件夹里面的每个 exp
文件里面的 weights/best.py
,里面还可以看到训练的效果
2. 侦测
侦测图片会保存在 ./inferenct/output/
文件夹下
运行命令:
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
例如使用我的 s
权重检测图片,可以运行以下命令,侦测图片会保存在 ./inferenct/output/
文件夹下
python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt
3. 检测危险区域内是否有人
3.1 危险区域标注方式
我这里使用的是 精灵标注助手 标注,生成了对应图片的 json 文件
3.2 执行侦测
侦测图片会保存在 ./inferenct/output/
文件夹下
运行命令:
python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt
3.3 效果:危险区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来
4. 生成 ONNX
4.1 安装 onnx
库
pip install onnx
4.2 执行生成
python ./models/export.py --weights ./weights/helmet_head_person_s.pt --img 640 --batch 1
onnx
和 torchscript
文件会生成在 ./weights
文件夹中
5. 增加数据集的分类
关于增加数据集分类的方法:
SHWD
数据集里面的 person
指的是头(head)
,没有 人体
的类别,先将现有的自己的数据集执行脚本生成 yolov5 需要的标签文件 .txt
,之后再用 yolov5x.pt
加上 yolov5x.yaml
,使用指令检测出人体
python detect.py --save-txt --source 自己数据集的文件目录 --weights ./weights/yolov5x.pt
yolov5
会推理出所有的分类,并在 inference/output
中生成对应图片的 .txt
标签文件;
修改 ./data/gen_data/merge_data.py
中的自己数据集标签所在的路径,执行这个python脚本,会进行 人体(person)
类型的合并
完整代码下载地址:基于yolov5算法的安全帽头盔检测源码+模型