StarRocks表设计——分区分桶与副本数

news2024/12/28 17:41:24

目录

一、数据分布

1.1 概述

1.2 数据分布方式

1.2.1 Round-Robin

1.2.2 Range

1.2.3 List

1.2.4 Hash

1.3 StarRocks的数据分布方式

1.3.1 不分区+ Hash分桶

1.3.2 Range分区+Hash分桶

三、分区

3.1 分区概述

3.2 创建分区

3.2.1 手动创建分区

3.2.2 批量创建分区

3.2.3 动态分区

四、分桶

4.1 分桶概述

4.2 设置分桶键

4.2.1 哈希分桶

4.3 确定分桶数量

4.3.1 建表时

4.3.2 建表后

五、建表调优

5.1 数据倾斜

5.2 高并发

5.3 高吞吐

5.4 元数据管理

六、分区分桶及副本之间的关系

该篇文章介绍StarRocks-2.5.4版本的分区分桶及副本相关内容,有误请指出~

一、数据分布

1.1 概述

      建表时,通过设置合理的分区和分桶,使数据均衡分布在不同节点上,查询时能够有效裁剪数据扫描量,最大限度的利用集群的并发性能,从而提升查询性能。

1.2 数据分布方式

      分布式数据库中常见的数据分布方式有:Round-Robin、Range、List 和 Hash。如下图所示:

1.2.1 Round-Robin

        以询的方式把数据逐个放置在相邻节点上。

1.2.2 Range

      按照分区进行数据分区,如下图所示,区间[1-3] 、[4-6]分别对应不同的范围(Range)。

适用场景:数据简单有序,并且通常按照连续日期/数值范围来查询和管理数据,range分区是常用的分区方式。

1.2.3 List

      直接基于离散的各个取值做数据分布,例如性别,省份等数据就满足这种离散的特性(离散:取值是有限的),每个离散值会映射到一个节点上,多个不同的取值可能也映射到相同节点上。适用场景:按照枚举值来查询和管理数据,比如经常按照国家和城市来查询和管理数据,则可以使用该方式,选择分区列为 city

1.2.4 Hash

      通过哈希函数把数据映射到不同节点上。

总结:可以根据具体的业务场景需求组合使用这些数据分布方式,常见的组合方式有 Hash+Hash、Range+Hash、Hash+List。

1.3 StarRocks的数据分布方式

   StarRocks支持两层的数据划分。第一层是Partition分区,支持Range、List或者不分区(不分区代表全表只有一个分区)。第二层是 Bucket分桶(Tablet),StarRocks-2.5.4版本分桶方式只有Hash哈希分桶。StarRocks常见的两种数据分布方式如下:

1.3.1 不分区+ Hash分桶

      概述: 一张表只有一个分区,分区按照分桶键和分桶数量进一步进行数据划分,分桶规则: Hash算法(分桶键)% 分桶数

    建表语句:

#不分区+ Hash分桶,分桶键为site_id
CREATE TABLE site_access(
    site_id INT DEFAULT '10',
    city_code SMALLINT,
    user_name VARCHAR(32) DEFAULT '',
    pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(site_id, city_code, user_name)
DISTRIBUTED BY HASH(site_id) BUCKETS 10;

1.3.2 Range分区+Hash分桶

      概述:一张表拆分成多个分区,每个分区按照分桶键和分桶数量进一步进行数据划分,分桶规则: Hash算法(分桶键)% 分桶数

     建表语句:

#分区键为partition_no,分桶键为cbhtbm:
create table test.ods_cbht (
      cbhtbm                string               comment "",
      fbfbm                 string               comment "",
      cbfbm                 string               comment "",
      cbfs                  string               comment "",
      cbqxq                 datetime             comment "",
      cbqxz                 datetime             comment "",
      partition_no          bigint               comment ""
) engine=olap
duplicate key(cbhtbm)
comment ""
partition  by   range(partition_no) (
start("110000")  end ("160000")  every (10000),
start("210000")  end ("240000")  every (10000),
start("310000")  end ("380000")  every (10000),
start("410000")  end ("470000")  every (10000),
start("500000")  end ("550000")  every (10000),
start("610000")  end ("660000")  every (10000),
start("710000")  end ("720000")  every (10000),
start("810000")  end ("830000")  every (10000)
)
distributed by hash(cbhtbm) buckets 8
properties (
"replication_num" = "3",
"in_memory" = "false",
"storage_format" = "default"
);

三、分区

3.1 分区概述

   (1)分区用于将数据划分成不同的区间。分区的主要作用是将一张表按照分区键拆分成不同的管理单元,针对每一个管理单元选择相应的存储策略,比如副本数分桶数冷热策略存储介质等。StarRocks支持在一个集群内使用多种存储介质,将新数据所在分区放在SSD盘上,利用 SSD优秀的随机读写性能来提高查询性能,将旧数据存放在 SATA 盘上,以节省数据存储的成本。   

  (2)选择合理的分区列可以有效的裁剪查询数据时扫描的数据量。业务系统中⼀般会选择根据时间进行分区,以优化大量删除过期数据带来的性能问题,同时也方便冷热数据分级存储。选择分区单位时需要综合考虑数据量、查询特点、数据粒度等因素。

  • 示例 1:表单月数据量很小,可以按月分区,相比于按天分区,可以减少元数据数量,从而减少元数据管理和调度的资源消耗
  • 示例 2:表单月数据量很大,而大部分查询条件精确到天,如果按天分区,可以做有效的分区裁减,减少查询扫描的数据量。
  • 示例 3:数据要求按天过期,可以按天分区。

  (3)StarRocks支持手动创建分区、批量创建分区、动态分区

3.2 创建分区

     选择合理的分区键可以有效的裁剪扫描的数据量,常见的分区键为时间或者区域,目前支持分区键的数据类型为日期和整数类型

3.2.1 手动创建分区

#分区键event_day,类型是DATE
CREATE TABLE site_access(
    event_day DATE,
    site_id INT DEFAULT '10',
    city_code VARCHAR(100),
    user_name VARCHAR(32) DEFAULT '',
    pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(event_day, site_id, city_code, user_name)
PARTITION BY RANGE(event_day)
(
    PARTITION p1 VALUES LESS THAN ("2020-01-31"),
    PARTITION p2 VALUES LESS THAN ("2020-02-29"),
    PARTITION p3 VALUES LESS THAN ("2020-03-31")
)
DISTRIBUTED BY HASH(site_id) BUCKETS 10;

3.2.2 批量创建分区

  • 建表时批量创建日期分区

       当分区键为日期类型时,建表时通过 start、end指定批量分区的开始日期和结束日期,every子句指定分区增量值。并且every子句中用 interval关键字表示日期间隔,目前仅支持日期间隔的单位为day、week、month、year。

#如下,批量分区的开始日期为2021-01-01和结束日期为2021-01-04,增量值为一天:
create table site_access (
    datekey date,
    site_id int,
    city_code smallint,
    user_name varchar(32),
    pv bigint default '0'
)
engine=olap
duplicate key(datekey, site_id, city_code, user_name)
partition by range (datekey) (
    start ("2021-01-01") end ("2021-01-04") every (interval 1 day)
)
distributed by hash(site_id) buckets 10
properties (
    "replication_num" = "3" 
);


#则相当于在建表语句中使用如下partition by子句:前闭后开
partition by range (datekey) (
    partition p20210101 values [('2021-01-01'), ('2021-01-02')),
    partition p20210102 values [('2021-01-02'), ('2021-01-03')),
    partition p20210103 values [('2021-01-03'), ('2021-01-04'))
)
  • 建表时批量创建区划分区 

      当分区键为区域类型时,建表时通过 start、end指定批量分区的开始和结束,every子句指定分区增量值

create table test.ods_cbht (
      cbhtbm                string               comment "",
      fbfbm                 string               comment "",
      cbfbm                 string               comment "",
      cbfs                  string               comment "",
      cbqxq                 datetime             comment "",
      cbqxz                 datetime             comment "",
      partition_no          bigint               comment ""

) engine=olap
duplicate key(cbhtbm)
comment ""
partition  by   range(partition_no) (
start("110000")  end ("160000")  every (10000),
start("210000")  end ("240000")  every (10000),
start("310000")  end ("380000")  every (10000),
start("410000")  end ("470000")  every (10000),
start("500000")  end ("550000")  every (10000),
start("610000")  end ("660000")  every (10000),
start("710000")  end ("720000")  every (10000),
start("810000")  end ("830000")  every (10000)
)
distributed by hash(cbhtbm) buckets 8
properties (
"replication_num" = "3",
"in_memory" = "false",
"storage_format" = "default"
);

3.2.3 动态分区

    可以按需对新数据动态创建分区,同时 StarRocks 会自动删除过期分区,从而确保数据的实效性,实现对分区的生命周期管理(Time to Life,简称 “TTL”),降低运维管理的成本。详细配置见文章:

动态分区 | StarRocks动态分区功能开启后,您可以按需为新数据动态地创建分区,同时 StarRocks 会⾃动删除过期分区,从而确保数据的时效性。https://docs.starrocks.io/zh/docs/2.5/table_design/dynamic_partitioning/

四、分桶

4.1 分桶概述

      分区按照分桶键和分桶数量进一步进行数据划分,一个分区按分桶方式被分成了多个桶 bucket,每个桶的数据称之为一个Tablet。StarRocks一般采用Hash算法作为分桶算法。在同一分区内,分桶键哈希值相同的数据会划分到同一个Tablet(数据分片),Tablet 以多副本冗余的形式存储,是数据均衡和恢复的最⼩单位,数据导入和查询最终都下沉到所涉及的 Tablet 副本上。ps:建表时,如果使用哈希分桶,则必须指定分桶键。

4.2 设置分桶键

4.2.1 哈希分桶

      对每个分区的数据,StarRocks会根据分桶键和分桶数量进行哈希分桶。哈希分桶中,使用特定的列值作为输入,通过哈希函数计算出一个哈希值,然后将数据根据该哈希值分配到相应的桶中。

 (1)优点

  • 提高查询性能。相同分桶键值的行会被分配到一个分桶中,在查询时能减少扫描数据量。
  • 均匀分布数据。通过选取较高基数(唯一值的数量较多)的列作为分桶键,能更均匀的分布数据到每一个分桶中。

 (2)如何选择分桶键

  • 如果查询比较复杂,则建议选择高基数的列为分桶键,保证数据在各个分桶中尽量均衡,提高集群资源利用率。
  • 如果查询比较简单,则建议选择经常作为查询条件的列为分桶键,提高查询效率。

  (3)注意

  • 建表时,如果使用哈希分桶,则必须指定分桶键。
  • 组成分桶键的列仅支持整型、decimal(数值型)、date/datetime(日期型)、char/varchar/string (字符串)数据类型。

  (4)案例

     案例一:假设site_id为高基数列,site_access表采用site_id作为分桶键

#假设site_id为高基数列,site_access表采用site_id作为分桶键
create table site_access(
    event_day date,
    site_id int default '10',
    city_code varchar(100),
    user_name varchar(32) default '',
    pv bigint sum default '0'
)
aggregate key(event_day, site_id, city_code, user_name)
partition by range(event_day) (
    partition p1 values less than ("2020-01-31"),
    partition p2 values less than ("2020-02-29"),
    partition p3 values less than ("2020-03-31")
)
distributed by hash(site_id);

    案例二:如果site_id分布十分不均匀,那么采用上述分桶方式会造成数据分布出现严重的倾斜,进而导致系统局部的性能瓶颈。需要调整分桶的字段,以将数据打散,避免性能问题。 例如,可以采用site_id、city_code组合作为分桶键,将数据划分得更加均匀。

# 如果site_id分布十分不均匀,那么采用上述分桶方式会造成数据分布出现严重的倾斜,进而导致系统局部的性能瓶颈。需要调整分桶的字段,以将数据打散,避免性能问题。
# 例如,可以采用site_id、city_code组合作为分桶键,将数据划分得更加均匀。
create table site_access
(
    site_id int default '10',
    city_code smallint,
    user_name varchar(32) default '',
    pv bigint sum default '0'
)
aggregate key(site_id, city_code, user_name)
distributed by hash(site_id,city_code);

    案例一 采用 site_id的分桶方式对于短查询十分有利,能够减少节点之间的数据交换,提高集群整体性能;案例二 采用 site_id、city_code的组合分桶方式对于长查询有利,能够利用分布式集群的整体并发性能

  • 短查询是指扫描数据量不大、单机就能完成扫描的查询。

  • 长查询是指扫描数据量大、多机并行扫描能显著提升性能的查询。

4.3 确定分桶数量

4.3.1 建表时

方式一:自动设置分桶数量

  自 2.5.7 版本起,支持根据机器资源和数据量自动设置分区中分桶数量。假设 BE 数量为 X,StarRocks 推断分桶数量的策略如下:

X <= 12  tablet_num = 2X
X <= 24  tablet_num = 1.5X
X <= 36 tablet_num = 36
X > 36  tablet_num = min(X, 48)

create table site_access(
    site_id int default '10',
    city_code smallint,
    user_name varchar(32) default '',
    pv bigint sum default '0'
)
aggregate key(site_id, city_code, user_name)
distributed by hash(site_id,city_code); --无需手动设置分桶数量

# 如果需要开启该功能,配置FE动态参数 enable_auto_tablet_distribution=true。 建表后执行show partitions来查看为分区自动设置的分桶数量。

方式二:手动设置分桶数量

    确定分桶数量方式可以是:首先预估每个分区的数据量,然后按照每10 GB原始数据划分一个 Tablet计算,从而确定分桶数量。 单个Tablet 的数据量理论上没有上下界,但建议在 1G - 10G 的范围内。如果单个Tablet 数据量过小,则数据的聚合效果不佳,且元数据管理压力大。如果数据量过大,则不利于副本的迁移、补齐。

-- 手动指定分桶个数的创建语法
distributed by hash(site_id) buckets 20

4.3.2 建表后

  • 新增一个分区时,参照上述的建表分桶设置规则
  • 已建分区:已创建分区的分桶数量不能修改

五、建表调优

   基于业务实际情况,在设计表结构时选择合理的分区键和分桶键,可以有效提高集群整体性能。

5.1 数据倾斜

     如果业务场景中单独采用倾斜度大的列做分桶,很大程度会导致访问数据倾斜,可以采用多列组合的方式进行分桶,将数据打散,使得各Tablet 数据更加均匀。

5.2 高并发

   分区和分桶应该尽量覆盖查询语句所带的条件,这样可以有效减少扫描数据,提高并发。

5.3 高吞吐

   尽量把数据打散,让集群以更高的并发扫描数据,完成相应计算。

5.4 元数据管理

   Tablet 过多会增加 FE/BE 的元数据管理和调度的资源消耗。

六、分区分桶及副本之间的关系

   数据库information_schema存储了关于StarRocks实例中所有对象的大量元数据信息。可以在表tables_config查看表的分区、分桶信息。

  • 表,分区,分桶以及副本的关系:

      Table (逻辑描述) -- > Partition(分区:管理单元) --> Bucket(分桶:每个分桶就是一个数据分片:Tablet,数据划分的最小逻辑单元)

    分区是逻辑概念,分桶是物理概念。每个分区partition内部会按照分桶键,采用哈希分桶算法将数据划分为多个桶bucket,每个桶的数据称之为一个数据分片tablet。根据建表设置的副本数,计算有多少个副本在其他节点上(负载均衡)。如上图所示,当BE节点数和副本数一致时,每个BE节点会保留这个表对应的所有的tablet的数据(自身hash分桶对应的tablet数据和其他节点tablet的副本)

    一个表的Tablet总数量等于 = Partition num * Bucket num* Replica Num ,上述案例就等于 3*3*3 =27 

  • 表,分区,分桶,tablet,rowset,segment文件的关系:

     数据在导入时,最先落到磁盘上的是当前导入批次生成的rowset文件,每一次导入事务的成功,都会生成一个带有版本号的rowset文件。rowset文件由多个segment文件组成,segment文件是由segment writer生成的文件块。

    待补充~

注:参考文章:

数据分布 | StarRocks

第2.4章:StarRocks表设计--分区分桶与副本数_strrocks 建表分区-CSDN博客

数据划分 - Apache Doris

聊聊分布式 SQL 数据库Doris(三)-腾讯云开发者社区-腾讯云

【Doris】Doris存储层设计介绍1——存储结构设计解析_doris 存储原理-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2.1.1 摄像头

摄像头 更多内容&#xff0c;请关注&#xff1a; github&#xff1a;https://github.com/gotonote/Autopilot-Notes.git 摄像头是目前自动驾驶车中应用和研究最广泛的传感器&#xff0c;其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟&#…

探讨深度学习

深度学习 深度学习概述进展崛起框架 主页传送门&#xff1a;&#x1f4c0; 传送 深度学习 概述 深度学习是机器学习领域的一个分支&#xff0c;它是一种基于人工神经网络的学习方法&#xff0c;旨在让 计算机模仿人类大脑的神经结构和学习方式&#xff0c;从大量数据中学习并…

SIFT 2D/3D检测原理

一、SIFT 2D 二、SIFT 3D SIFT 3D关键点检测以及SAC-IA粗配准-CSDN博客

人脸关键点标注工具

做人脸关键点时&#xff0c;发现网上的标注工具大部分都不好用&#xff0c;把好用的记录一下&#xff0c;给大家推荐一下&#xff1a; 人体关键点ai自动标注工具_哔哩哔哩_bilibili 人脸关键点数据集300w&#xff0c; https://download.csdn.net/download/u011385476/12344931…

mysql 执行update操作 记录未修改

问题 mysql 执行update操作 记录未修改 详细问题 笔者进行SpringBootMybatis项目开发&#xff0c;确认执行update操作 控制台内容如下 Creating a new SqlSession SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession3cbe9459] was not registered for sync…

视频号小店怎么做?新手必须掌握的三点核心步骤,建议收藏

大家好&#xff0c;我是电商花花。 现在短视频的快速发展&#xff0c;电商和直播、短视频不断结合发展&#xff0c;在去年视频号小店也迎来了大爆发&#xff0c;有不少朋友都靠着做视频号小店赚到了自己做电商的第一捅金&#xff0c;直接让很多朋友接触视频号小店&#xff0c;…

SHERlocked93 的 2020 年终总结

在下 SHERlocked93&#xff0c;两年半的南京前端打字员&#xff0c;慕课专栏《JavaScript 设计模式精讲》作者&#xff0c;公众号「前端下午茶」博主。 往年大家都是春节前写年终总结&#xff0c;今年好像都提前到了元旦。但我还是和往年一样&#xff0c;总结发的又晚了一点&am…

1.初识Tauri

文章目录 一、前言二、基本认识三、js与rust通信四、构建应用 一、前言 原文以及后续文章可点击查看&#xff1a;初识Tauri。 Tauri是一款比较新的跨平台桌面框架&#xff0c;也是我目前最喜欢的一个框架&#xff0c;其官网为&#xff1a;Tauri 它的作用其实和Electron很像&…

人工智能学习与实训笔记(十四):Langchain之Agent

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 本篇目录 0、概要 1、Agent整体架构 2、langchain中agent实现 3、Agent业务实现逻辑 0、概要 Agent是干什么的&#xff1f; Agent的核心思想是使用语言模型&#xff08;LLM&#xff09;作为推理的大脑…

VitePress-17- 配置- appearance 的作用详解

作用说明 appearance : 是进行主题模式的配置开关&#xff0c;决定了是否启用深色模式。 可选的配置值&#xff1a; true: 默认配置&#xff0c;可以切换为深色模式&#xff1b; false: 禁用主题切换&#xff0c;只使用默认的配置&#xff1b; dark: 默认使用深色模式&#xff…

【Linux网络编程六】服务器守护进程化Daemon

【Linux网络编程六】服务器守护进程化Daemon 一.背景知识&#xff1a;前台与后台二.相关操作三.Linux的进程间关系四.自成会话五.守护进程四步骤六.服务器守护进程化 一.背景知识&#xff1a;前台与后台 核心知识就是一个用户在启动Linux时&#xff0c;都会给一个session会话&a…

基于Springboot的社区物资交易互助平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的社区物资交易互助平台&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系…

leetcode刷题(罗马数字转数字)

1.题目描述 2.解题思路 这时候已经给出了字母对应的数字&#xff0c;我们只需要声明一个字典&#xff0c;将罗马数字和数字之间的对应关系声明即可。其中可能涉及到会出现两个连续的罗马字母代表一个数字&#xff0c;这时候我们需要判断遍历的字符和将要遍历的下一个字符是否存…

pytorch 实现线性回归(深度学习)

一 查看原始函数 初始化 %matplotlib inline import random import torch from d2l import torch as d2l 1.1 生成原始数据 def synthetic_data(w, b, num_examples):x torch.normal(0, 1, (num_examples, len(w)))y torch.matmul(x, w) bprint(x:, x)print(y:, y)y tor…

Mysql第二关之存储引擎

简介 所有关于Mysql数据库优化的介绍仿佛都有存储引擎的身影。本文介绍Mysql常用的有MyISAM存储引擎和Innodb存储引擎&#xff0c;还有常见的索引。 Mysql有两种常见的存储引擎&#xff0c;MyISAM和Innodb&#xff0c;它们各有优劣&#xff0c;经过多次优化和迭代&#xff0c;…

【STM32 CubeMX】SPI HAL库编程

文章目录 前言一、CubeMX配置SPI Flash二、SPI HAL编程2.1 查询方式函数2.2 使用中断方式2.3 DMA方式 总结 前言 STM32 CubeMX 是一款由 STMicroelectronics 提供的图形化配置工具&#xff0c;用于生成 STM32 微控制器的初始化代码和项目框架。在 STM32 开发中&#xff0c;使用…

JDBC查询操作

目录 加载驱动获取连接创建会话发送SQL处理结果关闭资源测试 加载驱动 // 加载驱动Class.forName("com.mysql.cj.jdbc.Driver");获取连接 // 获取连接String url "jdbc:mysql://127.0.0.1:3306/book";String username "root" …

2024全新领域,适合新手发展的渠道,年后不愁资金问题!

我是电商珠珠 如今年已经过完了&#xff0c;不少人还在迷茫自己开工后要做些什么&#xff0c;部分人还在想着去做一些不用吃力就能赚钱的工作&#xff0c;或是一份能兼顾自己日常生活的兼职。 其实&#xff0c;任何赚钱的工作要么动脑要么费力。 费力的工作有很多&#xff0…

敦煌网怎么提升流量的?如何进行自养号测评提升转化率?

敦煌网作为中国领先的跨境电商平台&#xff0c;对于商家而言&#xff0c;提升流量是增加曝光和销售的重要手段。以下将介绍敦煌网提升流量的几种方法。 一、敦煌网怎么提升流量的? 首先&#xff0c;通过合理的商品定位和市场调研&#xff0c;选择有潜力和竞争优势的商品进行…

android获取sha1

1.cmd在控制台获取 切换到Android Studio\jre\bin目录下执行keytool -list -v -keystore 签名文件路径例如&#xff1a; 2.也可以在android studio中获取 在Terminal中输入命令&#xff1a;keytool -list -v -keystore 签名文件路径获取 获取到的sha1如下&#xff1a;