C++ STL->list模拟实现

news2024/11/24 14:39:00

theme: smartblue

list
list文档

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高 效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率 更好。
    5.与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间 开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这 可能是一个重要的因素)

list类的函数接口

namespace ding
{
	//结点类
	template<class T>
	struct _list_node
	{
         //构造函数
		_list_node(const T& val = T());

		T _data;                 
		_list_node<T>* _next;   
		_list_node<T>* _prev;   
	};
	//迭代器类
	template<class T, class Ref, class Ptr>
	struct _list_iterator
	{
		typedef _list_node<T> node;
		typedef _list_iterator<T, Ref, Ptr> self;
		//构造函数
		_list_iterator(node* pnode);  

		
		self operator++();
		self operator--();
		self operator++(int);
		self operator--(int);
		bool operator==(const self& s) const;
		bool operator!=(const self& s) const;
		Ref operator*();
		Ptr operator->();

		//成员变量
		node* _pnode;
	};

	//list类
	template<class T>
	class list
	{
	public:
		typedef _list_node<T> node;
		typedef _list_iterator<T, T&, T*> iterator;
		typedef _list_iterator<T, const T&, const T*> const_iterator;

		//Member functions
		list();
		list(const list<T>& lt);
		list<T>& operator=(const list<T>& lt);
		~list();

		//Iterators:
		iterator begin();
		iterator end();
		const_iterator begin() const;
		const_iterator end() const;

		//Element access:
		T& front();
		T& back();
		const T& front() const;
		const T& back() const;

		//Modifiers:
		void insert(iterator pos, const T& x);
		iterator erase(iterator pos);
		void push_back(const T& x);
		void pop_back();
		void push_front(const T& x);
		void pop_front();

		//Capacity:
		size_t size() const;
		void resize(size_t n, const T& val = T());
		void clear();
		bool empty() const;
		void swap(list<T>& lt);

	private:
		node* _head; 
	};
}

结点类的实现

list底层采用了带头双向循环链表的结构实现。

image.png
在实现list前,需要定义出一个一个结点出来。直接定义一个结点类,让结点类完成结点的构造即可。

template<class T>
struct _list_node
{
        _list_node(const T& val = T())
                :_data(val)
                ,_next(nullptr)
                ,_prev(nullptr)
        {}
        T _data;
        _list_node<T>* _next;
        _list_node<T>* _prev;
};

迭代器类的实现

  • list底层物理空间不再连续,不再支持[]+下标的方式进行访问

image.png

  • 只能用迭代器进行访问
  • list迭代器的实现不能再像string或者vector那种底层物理空间连续的容器使用原生指针进行实现。
  • 底层空间连续,使用原生指针实现,指针自增或者自减就可以访问到对应的元素,而list由于底层物理空间不来连续的原因,不能再使用原生指针

解决方法

  • 定义一个迭代器类,迭代器相关的操作(比如++,!=,*)等操作但都在迭代器类中重载

结合之前string类和vector类的实现得知迭代器要么就是原生指针,要么就是自定义类型对原生指针的一种封装,去模拟指针的行为。比如对结点指针自增就能指向下一个结点

构造函数

迭代器就是对结点指针进行封装,这里只需要一个结点指针成员变量即可。

_list_iterator(node* node)
{
    _node = node;
}

++运算符重载

self operator++()
{
    _node = _node->_next;
    return *this;
}
self operator++(int)
{
    self tmp(*this);
    _node = _node->_next;
    return tmp;
}
  • 这里的self是经过typedef后的typedef _list_iterator<T, Ref, Ptr> self就是迭代器类类型
  • 前置++与后置++重载语法规定后置++的形参必须为int。
  • 后置++先记录一下当前结点,再让结点指向后一个,返回自增前的即可。

–运算符重载

self operator--()
{
    _node = _node->_prev;
    return *this;
}

self operator--(int)
{
    self tmp(*this);
    _node = _node->_prev;
    return tmp;
}

*运算符重载

解引用操作符,是想拿到地址的内容,直接返回当前结点的数据内容即可。

Ref operator*()
{
    return _node->_data;
}

注意
这里的返回值是Ref,在定义迭代器类是时候定义了三个模板参数,T就是指定的类型,Ref则是指定类型的引用类型,也就是T&,Ptr则是指定类型的指针类型,也就是T*。
在list的实现中,

typedef _list_iterator<T, T&, T*> iterator;
typedef _list_iterator<T, const T&, const T*> const_iterator;
  • STL底层源码就是这样设计的,主要就是为了解决const迭代器的问题,如果不用模板解决的话,可以在定义一个const iterator类也可以解决问题,但是在实现以一个const迭代器与普通迭代器的区别就仅仅只是*返回值类型不一样而已,利用模板参数解决更妙。
  • 普通迭代器返回T&类型,const迭代器返回const T&类型。
  • 这里返回引用类型,主要是因为解引用后可能需要对数据进行修改。

!= && ==

迭代器经常需要进行判断两个迭代器是否相等不相等的操作,这里这需要判断两个迭代器中的结点是否相等即可,不需要做其他操作,定义出成const更为合理。

bool operator==(const self& s) const
{
    return _node == s._node;
}
bool operator!=(const self& s) const
{
    return _node != s._node;
}

->操作符重载

这个操作符对于迭代器类型并不是很常用,但是为了模拟指针的行为,指针有->操作符,迭代器就模拟实现了。

运算符 -> 必须是一个成员函数。如果使用了 -> 运算符,返回类型必须是指针或者是类的对象。也就是这里返回值必须是Ptr 指定类型T*类型。

Ptr operator->()
{
        return &(_node->_data);
}

使用->场景:
当list中存放的是自定义类型,

class Date
{
public:
    Date(int year)
    {
            _year = year;
    }
    int _year = 0;
};
int main()
{
    std::list<Date>lt;
    lt.push_back(2023);
    lt.push_back(2024);
    auto it = lt.begin();
    cout << it->_year << endl;
    return 0;
}

可以使用->访问类的成员变量。

list类的实现

Member functions

构造函数

list()
{
    _head = new node;
    _head->_prev = _head;
    _head->_next = _head;
}

这里的node是经过typedef得。typedef _list_node<T> node;对结点类起的别名
构造一个链表即可,这里得空链表是需要一个头节点得。并且让自己指向自己。

image.png

拷贝构造

申请一个新的头结点,再将源容器中的数据依次尾插到新容器中即可

list(const list<T>& lt)
{
    _head = new node;
    _head->_next = _head;
    _head->_prev = _head;
    for (auto val : lt)
    {
            push_back(val);
    }
}

赋值运算符重载

  • 将原来容器中的数据清空,在依次尾插新元素即可
  • 注意要判断是否自己给自己赋值,不能自己给自己赋值,自己给自己赋值clear后数据丢失了
list<T>& operator=(const list<T>& lt)
{
    if (this != &lt)
    {
            clear();
            for (const auto e : lt)
            {
                    push_back(e);
            }
    }
    return *this;
}

迭代器构造

template<class InputIterator>
list(InputIterator first, InputIterator last)
{
    _head = new node;
    _head->_prev = _head;
    _head->_next = _head;
    while (first != last)
    {
            push_back(*first);
            ++first;
    }
}

析构函数

先清空容器在释放头节点即可

~list()
{
    clear();
    delete _head;
    _head = nullptr;
}

clear函数

void clear()
{
    auto it = begin();
    while (it != end())
    {
            erase(it++);
    }
}

Iterators

begin && end

begin函数返回的是第一个有效数据的迭代器,end函数返回的是最后一个有效数据的下一个位置的迭代器
底层是双向循环链表实现的,所以头结点的下一个就是gebin,头节点就是end。

image.png

iterator begin()
{
    return iterator(_head->_next);
}
iterator end()
{
    return iterator(_head->_prev);
}
const_iterator begin() const
{
    return iterator(_head->_next);
}
const_iterator end() const
{
    return iterator(_head->_prev);
}

Modifiers

insert

在pos位置前面插入一个结点

image.png

void insert(iterator pos, const T& x)
{
    node* newnode = new node(x);//创建新结点
    node* cur = pos._node;//pos位置的结点指针
    node* prev = cur->_prev;//pos前一个
    //连接关系
    prev->_next = newnode;
    newnode->_prev = prev;
    newnode->_next = cur;
    cur->_prev = newnode;
}

push_back && push_front

  • 尾插 && 头插
  • 在链表的尾部插入一个结点 && 在链表的头部插入一个结点
  • 有了insert和迭代器,直接函数复用即可
//尾插
void push_back(const T& x)
{
        insert(end(), x);
}
//头插
void push_front(const T& x)
{
    insert(begin(), x);
}

eraser

删除pos位置的结点

image.png

iterator erase(iterator pos)
{
    node* cur = pos._node;//当前结点指针
    node* prev = cur->_prev;//pos位置前一个结点
    node* next = cur->_next;//pops位置后一个结点
    //连接关系
    prev->_next = next;
    next->_prev = prev;
    //释放删除的结点
    delete cur;

    return iterator(next);//防止迭代器失效,返回pos位置下一个迭代器
}

pop_back && pop_front

  • 尾删和头删
  • 复用迭代器和rease即可
  • end是头节点,尾删时需要–end() 才是尾部结点
void pop_back()
{
    erase(--end());
}

void pop_front()
{
    erase(begin());
}

Capacity

size

  • 求容器元素个数
  • 遍历容器求个数(效率太低不推荐)
size_t size() const
{
    size_t size = 0;
    auto it = begin();
    while (it != end())
    {
            size++;
            it++;
    }
    return size;
}
  • 在定义一个成员变量统计元素个数(以空间换时间,更推荐)

clear

  • 清空list中的结点,除了头结点。
  • 利用迭代器遍历尾删即可
void clear()
{
    auto it = begin();
    while (it != end())
    {
            pop_back();
    }
}

empty

bool empty() const
{
    return _head->_next;
}

resize

  • 扩容加初始化函数
  • resize规则
  • 若当前容器的size小于所给n,则尾插结点,直到size等于n为止。
  • 若当前容器的size大于所给n,则只保留前n个有效数据。
void resize(size_t n, const T& val = T())
{
    size_t sz = size();
    if (sz < n)//扩容
    {
            for (; sz < n; ++sz)
            {
                    push_back(val);
            }
    }
    else//不扩容
    {
            if (sz > n)//缩容
            {
                    int len = sz - n;
                    cout << len << endl;
                    while (len--)
                    {
                            pop_back();
                    }
            }
    }

}

swap函数

交换两个容器的头指针即可

void swap(list<T>& lt)
{
    std::swap(_head, lt._head);
}

参考源码

  • gitee 码云 - 开源中国
  • 欢迎在评论区提出问题或留下你的观点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1451873.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

飞天使-k8s知识点20-kubernetes实操5-pod更新与暂停-statefulset

文章目录 资源调度 Deployment&#xff1a;扩缩容资源调度 Deployment&#xff1a;更新的暂停与恢复资源调度 StatefulSet&#xff1a;定义一个有状态服务headless service 金丝雀发布 资源调度 Deployment&#xff1a;扩缩容 扩容和缩容&#xff0c;常用的功能 scale[rootkub…

安全基础~通用漏洞5

文章目录 知识补充CSRFSSRFxss与csrf结合创建管理员账号 知识补充 NAT&#xff1a;网络地址转换&#xff0c;可以将IP数据报文头中的IP地址转换为另一个IP地址&#xff0c;并通过转换端口号达到地址重用的目的。即通过将一个外部IP地址和端口映射更大的内部IP地址集来转换IP地…

人工智能学习与实训笔记(二):神经网络之图像分类问题

目录 四、图像分类问题 4.1 尝试使用全连接神经网络 4.2 引入卷积神经网络 4.3 分类函数Softmax 4.4 交叉熵损失函数 4.5 学习率优化算法 4.6 图像预处理算法 4.6.1 随机改变亮暗、对比度和颜色等 4.6.2 随机填充 4.6.3 随机裁剪 4.6.4 随机缩放 4.6.5 随机翻转 4.…

【开源】SpringBoot框架开发学校热点新闻推送系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 新闻类型模块2.2 新闻档案模块2.3 新闻留言模块2.4 新闻评论模块2.5 新闻收藏模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 新闻类型表3.2.2 新闻表3.2.3 新闻留言表3.2.4 新闻评论表3.2.5 新闻收藏表 四、系统展…

计算机设计大赛 深度学习YOLO安检管制物品识别与检测 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov55 模型训练6 实现效果7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLO安检管制误判识别与检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&…

如何合理评估信号过孔的残桩效应--Via Stub

设计中&#xff0c;之所以会去考察信号过孔的残桩效应&#xff08;Via Stub&#xff09;&#xff0c;是因为它的存在导致了不需要的频率谐振&#xff0c;当这些谐振出现在所关注的信号通道的插入损耗中时&#xff0c;就会引发较为严重的信号完整性&#xff08;SI&#xff09;问…

【Java程序设计】【C00251】基于Springboot的医院信息管理系统(有论文)

基于Springboot的医院信息管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的医院信管系统 本系统分为管理员功能模块、系统功能模块以及医生功能模块。 系统功能模块&#xff1a;医院信管系统&#xff0c;…

活用 Composition API 核心函数,打造卓越应用(上)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

电容充电速度

对电容充电的过程中&#xff0c;电容器充电的电压为&#xff0c;求电容器的充电速度。

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(三)—— 数组的操作

准备 这是Numpy数据处理的示例演绎系列文章的第三篇&#xff0c;我的前两篇文章为&#xff1a; 政安晨&#xff1a;【示例演绎】【Python】【Numpy数据处理】快速入门&#xff08;一&#xff09;https://blog.csdn.net/snowdenkeke/article/details/136125773 政安晨&#x…

挑战杯 python的搜索引擎系统设计与实现

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python的搜索引擎系统设计与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;5分创新点&#xff1a;3分 该项目较为新颖&#xff…

心理辅导|高校心理教育辅导系统|基于Springboot的高校心理教育辅导系统设计与实现(源码+数据库+文档)

高校心理教育辅导系统目录 目录 基于Springboot的高校心理教育辅导系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、学生功能模块的实现 &#xff08;1&#xff09;学生登录界面 &#xff08;2&#xff09;留言反馈界面 &#xff08;3&#xff09;试卷列表界…

娱乐直播APP开发:引领潮流,创新无界

随着互联网技术的飞速发展&#xff0c;娱乐直播APP已经成为现代人生活的重要组成部分。它以其独特的互动性、即时性和个性化&#xff0c;吸引了大量用户。本文将深入探讨娱乐直播APP开发的关键要素&#xff0c;以及如何在这个竞争激烈的市场中脱颖而出。 一、娱乐直播APP的核心…

http“超级应用与理解”

本篇文章来介绍一下http协议和其应用 1.http协议是在OSI模型的哪一层 HTTP&#xff08;超文本传输协议&#xff09;是应用层协议&#xff0c;它是在 OSI 模型的最高层&#xff0c;即第七层——应用层。HTTP 通过互联网来传输数据和信息&#xff0c;主要用于 Web 浏览器和 Web …

关于DVWA靶场Command Injection(命令注入)乱码的解决方案

乱码如下图&#xff1a; 出现乱码一般都是编码方式的问题&#xff0c;我们只需要对其换一种编码方式输出即可 靶场在 WWW 目录下&#xff0c;在靶场所在路径下有一个 dvwa 文件夹 进入之后找到 includes 文件夹 进入找到文件 dvwaPage.inc.php 右键&#xff0c;使用记事本打开…

ZYNQ:PL-CAN总线功能应用

流程背景 前期基本实现PS端的CAN总线功能&#xff0c;现阶段的主要目的是实现PL端的CAN总线功能&#xff0c;需要采用CAN IP。 PL系统搭建 PL外设时钟源 搭建完vivado系统后&#xff0c;需要在sdk编程。但是在配置PL&#xff0d;CAN时&#xff0c;意识到CAN时钟值不清楚&…

【NLP】MHA、MQA、GQA机制的区别

Note LLama2的注意力机制使用了GQA。三种机制的图如下&#xff1a; MHA机制&#xff08;Multi-head Attention&#xff09; MHA&#xff08;Multi-head Attention&#xff09;是标准的多头注意力机制&#xff0c;包含h个Query、Key 和 Value 矩阵。所有注意力头的 Key 和 V…

铱塔 (iita) 开源 IoT 物联网开发平台,基于 SpringBoot + TDEngine +Vue3

01 铱塔 (iita) 物联网平台 铱塔智联 (open-iita) 基于Java语言的开源物联网基础开发平台&#xff0c;提供了物联网及相关业务开发的常见基础功能, 能帮助你快速搭建自己的物联网相关业务平台。 铱塔智联平台包含了品类、物模型、消息转换、通讯组件&#xff08;mqtt/EMQX通讯组…

第7章 Page449~451 7.8.9智能指针 std::shared_ptr

“shared_ptr”是“共享式智能指针”。 即多个“shared_ptr”之间可以管理同一个裸指针。于是 O* o new O; //一个裸指针 std::shared_ptr <O> p1(o); //交给p1管 std::shared_ptr <O> p2(o); //又交给p2管 出乎意料&#xff0c;以上代码仍然是可以通过编译但运…