人工智能学习与实训笔记(二):神经网络之图像分类问题

news2024/11/24 14:54:54

目录

四、图像分类问题

4.1 尝试使用全连接神经网络

4.2 引入卷积神经网络

 4.3 分类函数Softmax

4.4 交叉熵损失函数

4.5 学习率优化算法

4.6 图像预处理算法

4.6.1 随机改变亮暗、对比度和颜色等

4.6.2 随机填充

4.6.3 随机裁剪

4.6.4 随机缩放

4.6.5 随机翻转

4.6.6 随机打乱真实框排列顺序


四、图像分类问题

图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。

本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。

我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。

4.1 尝试使用全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

Python源码 - 激活函数为sigmoid的多层网络参考代码:

import paddle.nn.functional as F
from paddle.nn import Linear

# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        # 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整
        self.fc1 = Linear(in_features=784, out_features=10)
        self.fc2 = Linear(in_features=10, out_features=10)
        # 定义一层全连接输出层,输出维度是1
        self.fc3 = Linear(in_features=10, out_features=1)
    
    # 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数
    def forward(self, inputs):
        # inputs = paddle.reshape(inputs, [inputs.shape[0], 784])
        outputs1 = self.fc1(inputs)
        outputs1 = F.sigmoid(outputs1)
        outputs2 = self.fc2(outputs1)
        outputs2 = F.sigmoid(outputs2)
        outputs_final = self.fc3(outputs2)
        return outputs_final

然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:

4.2 引入卷积神经网络

图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)

关于卷积神经网络,可以参考这一篇:

PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎

关于卷积核和输入,输出通道,可以参考这一篇:

如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客

​​

Python源码 - 卷积神经网络参考代码:

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
         # 定义一层全连接层,输出维度是1
         self.fc = Linear(in_features=980, out_features=1)
         
    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层不使用激活函数
     def forward(self, inputs):
         x = self.conv1(inputs)
         x = F.relu(x)
         x = self.max_pool1(x)
         x = self.conv2(x)
         x = F.relu(x)
         x = self.max_pool2(x)
         x = paddle.reshape(x, [x.shape[0], -1])
         x = self.fc(x)
         return x

 4.3 分类函数Softmax

 为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]

​​

比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。

​​

4.4 交叉熵损失函数

分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。

正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。 

​​

要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎

里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客

4.5 学习率优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 所示。

图3: 不同学习率算法效果示意图

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

4.6 图像预处理算法

在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:

  • 随机改变亮暗、对比度和颜色
  • 随机填充
  • 随机裁剪
  • 随机缩放
  • 随机翻转
  • 随机打乱真实框排列顺序

下面是分别使用numpy 实现这些数据增强方法。

4.6.1 随机改变亮暗、对比度和颜色等

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random

# 随机改变亮暗、对比度和颜色等
def random_distort(img):
    # 随机改变亮度
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)
    # 随机改变对比度
    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)
    # 随机改变颜色
    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = Image.fromarray(img)
    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)
    img = np.asarray(img)

    return img

# 定义可视化函数,用于对比原图和图像增强的效果
import matplotlib.pyplot as plt
def visualize(srcimg, img_enhance):
    # 图像可视化
    plt.figure(num=2, figsize=(6,12))
    plt.subplot(1,2,1)
    plt.title('Src Image', color='#0000FF')
    plt.axis('off') # 不显示坐标轴
    plt.imshow(srcimg) # 显示原图片

    # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
    srcimg_gtbox = records[0]['gt_bbox']
    srcimg_label = records[0]['gt_class']

    plt.subplot(1,2,2)
    plt.title('Enhance Image', color='#0000FF')
    plt.axis('off') # 不显示坐标轴
    plt.imshow(img_enhance)


image_path = records[0]['im_file']
print("read image from file {}".format(image_path))
srcimg = Image.open(image_path)
# 将PIL读取的图像转换成array类型
srcimg = np.array(srcimg)

# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance = random_distort(srcimg)
visualize(srcimg, img_enhance)

4.6.2 随机填充

# 随机填充
def random_expand(img,
                  gtboxes,
                  max_ratio=4.,
                  fill=None,
                  keep_ratio=True,
                  thresh=0.5):
    if random.random() > thresh:
        return img, gtboxes

    if max_ratio < 1.0:
        return img, gtboxes

    h, w, c = img.shape
    ratio_x = random.uniform(1, max_ratio)
    if keep_ratio:
        ratio_y = ratio_x
    else:
        ratio_y = random.uniform(1, max_ratio)
    oh = int(h * ratio_y)
    ow = int(w * ratio_x)
    off_x = random.randint(0, ow - w)
    off_y = random.randint(0, oh - h)

    out_img = np.zeros((oh, ow, c))
    if fill and len(fill) == c:
        for i in range(c):
            out_img[:, :, i] = fill[i] * 255.0

    out_img[off_y:off_y + h, off_x:off_x + w, :] = img
    gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
    gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
    gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
    gtboxes[:, 3] = gtboxes[:, 3] / ratio_y

    return out_img.astype('uint8'), gtboxes


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

4.6.3 随机裁剪

随机裁剪之前需要先定义两个函数,multi_box_iou_xywhbox_crop这两个函数将被保存在box_utils.py文件中。

import numpy as np

def multi_box_iou_xywh(box1, box2):
    """
    In this case, box1 or box2 can contain multi boxes.
    Only two cases can be processed in this method:
       1, box1 and box2 have the same shape, box1.shape == box2.shape
       2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1
    If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong.
    """
    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."


    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w = np.clip(inter_w, a_min=0., a_max=None)
    inter_h = np.clip(inter_h, a_min=0., a_max=None)

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)

def box_crop(boxes, labels, crop, img_shape):
    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (
        boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (
        boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(
        axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (
        boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (
        boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, mask.sum()

# 随机裁剪
def random_crop(img,
                boxes,
                labels,
                scales=[0.3, 1.0],
                max_ratio=2.0,
                constraints=None,
                max_trial=50):
    if len(boxes) == 0:
        return img, boxes

    if not constraints:
        constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),
                       (0.9, 1.0), (0.0, 1.0)]

    img = Image.fromarray(img)
    w, h = img.size
    crops = [(0, 0, w, h)]
    for min_iou, max_iou in constraints:
        for _ in range(max_trial):
            scale = random.uniform(scales[0], scales[1])
            aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
                                          min(max_ratio, 1 / scale / scale))
            crop_h = int(h * scale / np.sqrt(aspect_ratio))
            crop_w = int(w * scale * np.sqrt(aspect_ratio))
            crop_x = random.randrange(w - crop_w)
            crop_y = random.randrange(h - crop_h)
            crop_box = np.array([[(crop_x + crop_w / 2.0) / w,
                                  (crop_y + crop_h / 2.0) / h,
                                  crop_w / float(w), crop_h / float(h)]])

            iou = multi_box_iou_xywh(crop_box, boxes)
            if min_iou <= iou.min() and max_iou >= iou.max():
                crops.append((crop_x, crop_y, crop_w, crop_h))
                break

    while crops:
        crop = crops.pop(np.random.randint(0, len(crops)))
        crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))
        if box_num < 1:
            continue
        img = img.crop((crop[0], crop[1], crop[0] + crop[2],
                        crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
        img = np.asarray(img)
        return img, crop_boxes, crop_labels
    img = np.asarray(img)
    return img, boxes, labels


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
srcimg_label = records[0]['gt_class']

img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
visualize(srcimg, img_enhance)

4.6.4 随机缩放

# 随机缩放
def random_interp(img, size, interp=None):
    interp_method = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_AREA,
        cv2.INTER_CUBIC,
        cv2.INTER_LANCZOS4,
    ]
    if not interp or interp not in interp_method:
        interp = interp_method[random.randint(0, len(interp_method) - 1)]
    h, w, _ = img.shape
    im_scale_x = size / float(w)
    im_scale_y = size / float(h)
    img = cv2.resize(
        img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
    return img

# 对原图做 随机缩放
img_enhance = random_interp(srcimg, 640)
visualize(srcimg, img_enhance)

4.6.5 随机翻转

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):
    if random.random() > thresh:
        img = img[:, ::-1, :]
        gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
    return img, gtboxes


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

4.6.6 随机打乱真实框排列顺序

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):
    gt = np.concatenate(
        [gtbox, gtlabel[:, np.newaxis]], axis=1)
    idx = np.arange(gt.shape[0])
    np.random.shuffle(idx)
    gt = gt[idx, :]
    return gt[:, :4], gt[:, 4]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1451868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【开源】SpringBoot框架开发学校热点新闻推送系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 新闻类型模块2.2 新闻档案模块2.3 新闻留言模块2.4 新闻评论模块2.5 新闻收藏模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 新闻类型表3.2.2 新闻表3.2.3 新闻留言表3.2.4 新闻评论表3.2.5 新闻收藏表 四、系统展…

计算机设计大赛 深度学习YOLO安检管制物品识别与检测 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov55 模型训练6 实现效果7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLO安检管制误判识别与检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&…

如何合理评估信号过孔的残桩效应--Via Stub

设计中&#xff0c;之所以会去考察信号过孔的残桩效应&#xff08;Via Stub&#xff09;&#xff0c;是因为它的存在导致了不需要的频率谐振&#xff0c;当这些谐振出现在所关注的信号通道的插入损耗中时&#xff0c;就会引发较为严重的信号完整性&#xff08;SI&#xff09;问…

【Java程序设计】【C00251】基于Springboot的医院信息管理系统(有论文)

基于Springboot的医院信息管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的医院信管系统 本系统分为管理员功能模块、系统功能模块以及医生功能模块。 系统功能模块&#xff1a;医院信管系统&#xff0c;…

活用 Composition API 核心函数,打造卓越应用(上)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

电容充电速度

对电容充电的过程中&#xff0c;电容器充电的电压为&#xff0c;求电容器的充电速度。

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(三)—— 数组的操作

准备 这是Numpy数据处理的示例演绎系列文章的第三篇&#xff0c;我的前两篇文章为&#xff1a; 政安晨&#xff1a;【示例演绎】【Python】【Numpy数据处理】快速入门&#xff08;一&#xff09;https://blog.csdn.net/snowdenkeke/article/details/136125773 政安晨&#x…

挑战杯 python的搜索引擎系统设计与实现

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python的搜索引擎系统设计与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;5分创新点&#xff1a;3分 该项目较为新颖&#xff…

心理辅导|高校心理教育辅导系统|基于Springboot的高校心理教育辅导系统设计与实现(源码+数据库+文档)

高校心理教育辅导系统目录 目录 基于Springboot的高校心理教育辅导系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、学生功能模块的实现 &#xff08;1&#xff09;学生登录界面 &#xff08;2&#xff09;留言反馈界面 &#xff08;3&#xff09;试卷列表界…

娱乐直播APP开发:引领潮流,创新无界

随着互联网技术的飞速发展&#xff0c;娱乐直播APP已经成为现代人生活的重要组成部分。它以其独特的互动性、即时性和个性化&#xff0c;吸引了大量用户。本文将深入探讨娱乐直播APP开发的关键要素&#xff0c;以及如何在这个竞争激烈的市场中脱颖而出。 一、娱乐直播APP的核心…

http“超级应用与理解”

本篇文章来介绍一下http协议和其应用 1.http协议是在OSI模型的哪一层 HTTP&#xff08;超文本传输协议&#xff09;是应用层协议&#xff0c;它是在 OSI 模型的最高层&#xff0c;即第七层——应用层。HTTP 通过互联网来传输数据和信息&#xff0c;主要用于 Web 浏览器和 Web …

关于DVWA靶场Command Injection(命令注入)乱码的解决方案

乱码如下图&#xff1a; 出现乱码一般都是编码方式的问题&#xff0c;我们只需要对其换一种编码方式输出即可 靶场在 WWW 目录下&#xff0c;在靶场所在路径下有一个 dvwa 文件夹 进入之后找到 includes 文件夹 进入找到文件 dvwaPage.inc.php 右键&#xff0c;使用记事本打开…

ZYNQ:PL-CAN总线功能应用

流程背景 前期基本实现PS端的CAN总线功能&#xff0c;现阶段的主要目的是实现PL端的CAN总线功能&#xff0c;需要采用CAN IP。 PL系统搭建 PL外设时钟源 搭建完vivado系统后&#xff0c;需要在sdk编程。但是在配置PL&#xff0d;CAN时&#xff0c;意识到CAN时钟值不清楚&…

【NLP】MHA、MQA、GQA机制的区别

Note LLama2的注意力机制使用了GQA。三种机制的图如下&#xff1a; MHA机制&#xff08;Multi-head Attention&#xff09; MHA&#xff08;Multi-head Attention&#xff09;是标准的多头注意力机制&#xff0c;包含h个Query、Key 和 Value 矩阵。所有注意力头的 Key 和 V…

铱塔 (iita) 开源 IoT 物联网开发平台,基于 SpringBoot + TDEngine +Vue3

01 铱塔 (iita) 物联网平台 铱塔智联 (open-iita) 基于Java语言的开源物联网基础开发平台&#xff0c;提供了物联网及相关业务开发的常见基础功能, 能帮助你快速搭建自己的物联网相关业务平台。 铱塔智联平台包含了品类、物模型、消息转换、通讯组件&#xff08;mqtt/EMQX通讯组…

第7章 Page449~451 7.8.9智能指针 std::shared_ptr

“shared_ptr”是“共享式智能指针”。 即多个“shared_ptr”之间可以管理同一个裸指针。于是 O* o new O; //一个裸指针 std::shared_ptr <O> p1(o); //交给p1管 std::shared_ptr <O> p2(o); //又交给p2管 出乎意料&#xff0c;以上代码仍然是可以通过编译但运…

云计算基础-大页内存

大页内存功能概述 什么是大页内存 简单来说&#xff0c;就是通过增大操作系统页的大小来减小页表&#xff0c;从而避免快表缺失 主要应用场景 主要运用于内存密集型业务的虚拟机&#xff0c;比如对于运行数据库系统的虚拟机&#xff0c;采用HugePages(大页)后&#xff0c;可…

《区块链公链数据分析简易速速上手小册》第1章:区块链基础(2024 最新版)

文章目录 1.1 区块链技术概览&#xff1a;深入探究与实用案例1.1.1 区块链的核心概念1.1.2 重点案例&#xff1a;供应链管理1.1.3 拓展案例 1&#xff1a;数字身份验证1.1.4 拓展案例 2&#xff1a;智能合约在房地产交易中的应用 1.2 主流公链介绍1.2.1 公链的核心概念1.2.2 重…

Qt for android : Qt6.6.2 搭建 环境

环境说明 参考Qt助手: Assistant 6.6.2 (MinGW 11.2.0 64-bit) ***Gradle : Gradle wrapper, version 8.3***JDK11 SDK Tools / NDK 25.1.8937393 参考 Qt For Android : Qt5.13.1 Qt for android: Qt6.4搭建环境遇到的几个问题