基于AI Agent探讨:安全领域下的AI应用范式

news2025/1/18 4:32:59

先说观点:关于AI应用,通常都会聊准召。但在安全等模糊标准的场景下,事实上不存在准召的定义。因此,AI的目标应该是尽可能的“像人”。而想要评价有多“像人”,就先需要将人的工作数字化。而AI Agent是能够将数字化、自动化、智能化这几个转变过程相对顺畅衔接起来的一种框架。

0、为什么GPT让大家感到兴奋

单纯从能力上看,针对特定的任务,GPT是不如各种已有能力的:

  • 执行加减乘除、排序、去重等任务,GPT远不如各种脚本和工具来得靠谱。当任务相对简单时,还能够应付,一旦复杂度增加,GPT就会出现各种异常,比如:大数计算、长文本任务等。

  • 强监督任务,即使复杂度极高,比如下围棋,AlphaGo早就通过深度学习能力打败了人类,单纯GPT肯定是比敌AlphaGo的。尽管AlphaGo取得了如此高的成就,但带来了反响并没有GPT热烈。

在细分领域能力并不强的情况下,为什么GPT带来如此大的跨圈影响?ChatGPT功不可没,他呈现的“对话”这一交互形式,大幅度降低了AI的体验门槛,拉近了人与AI的距离。而能够支撑“对话”这种交互模式,其实也代表了GPT的一些能力特性:

  • 更宽松的输入和输出兼容:过往的AI通常都会要求特定格式的输入和输出,比如输入一堆特征,输出一个0和1的结果。而GPT的生成式能力,让输入输出可以变得十分随意。

  • 具备较强的通识:ChatGPT选用的“大力出奇迹”方式,增大参数量和训练集,也使得自身具备了足够多的知识储备,能够zero-shot应对大部分问答场景。

因此,以GPT为代表的大模型,相当于一个“宽而浅”的智能体。承担简单任务时,其灵活性会大幅度提升工作效率,但如果承担复杂工作,则往往不会给到有效的反馈。

1、AI Agent简介

那怎么提升LLM的能力深度呢?

最直接的方法是提供更多专项领域内的数据进行训练or微调,但成本会相对较高,也未必会取得正向效果,新的知识输入可能会导致模型遗忘已有的关键知识。

在Prompt中提供更多的上下文数据,是更直接的思路。

  • 比如GPT不知道新发生的事情,那就拼接一个搜索插件,在提问的时候,把查询的最新内容放到Prompt中,这样GPT就能将其作为参考来回答问题。

  • 比如GPT不知道一些领域内的知识,那就提供一个知识库,在提问的时候,先在知识库中检索相关的知识放到Prompt中,这样GPT就能够将知识库作为参考来回复。

这种通过外部力量增强模型能力的做法,就属于AI Agent的简单形态。

AI Agent的学术定义如下:

Xi, Zhiheng, et al. "The rise and potential of large language model based agents: A survey." arXiv preprint arXiv:2309.07864 (2023).

AI Agent由大脑(Brain)、感知(Perception)、行动(Action)三个部分组成。作为控制器,大脑模块承担记忆、思考和决策等基本任务;感知模块负责感知和处理来自外部环境的多模态信息;行动模块负责使用工具执行任务并影响周围环境。Agent的内部信息通路是Perception->Brain->Action构成的一个循环:接受到某个任务后,大脑先做出规划,然后根据当前阶段决策需要做出哪些动作;感知到这些动作的反馈后,结合历史记忆,做出下一步决策。

Agent和playbook的概念其实很接近,或者跟进一步说,“有限状态机”本身就是一种Agent的体现。而这其中的主要差别在于,AI Agent不倾向提前定义好明确的SOP,而是让AI根据已知的情况自主判断,做出决策和下一步动作。

那为什么LLM给Agent带来了新的活力呢?因为定义过程其实是一件很难的事情:购物的时候如何挑选合适的商品、下棋的时候如何决策下一步、投资的时候选取有潜力的目标,等等。随着事件类型和特征的丰富程度增加,人来决策的直觉性越来越强,将其抽象为一个代码实现的过程也更加困难。而LLM的通识性和逻辑性,恰好能规避掉这个过程。

从另一方面来说,当前阶段的LLM不擅长完成复杂任务,但大量研究发现其具备CoT能力:通过将复杂任务进行拆解,逐步完成,能够大幅提升最终的成功率。而Agent则是一个CoT的合适载体。

因此,LLM和Agent起到了相互促进的作用。

2、安全领域下的算法应用

安全的特点是对bad case极度敏感。所以安全更讲究逻辑,不讲究概率。

比如特斯拉发生一起事故,如果只是讲概率,特斯拉已经安全行驶百万公里,事故率低于0.0001%,而你就是不幸被小概率命中的那波人。尽管都是客观公正的事实,但数字过于冰冷,并无法说服人们的赢得信任。所有要做的其实是还原事故过程,让人们认为特斯拉作为汽车厂商该做的都做了,才有可能平息质疑。

而过去算法的应用本质上都属于概率学的呈现(比如推荐你大概率会感兴趣的商品),因此很难在安全场景下得到大规模的使用,仅在部分风险可接受的场景下呈现出了积极的发展态势。如人脸识别支付,哪怕识别错了,用其他人的账户完成了支付,厂商仅需要进行对应损失的赔付即可,从整体概率上是可接受的。

在ChatGPT刚火热的时候,我一度认为Copilot是解决这一困境的方法:算法不再做决策,只是提供建议,最终还是由人来做决策。但使用一段时间后,能够明显感觉到直接讲GPT作为Copilot能提供的帮助是有限的:

  • 面对简单的场景,写段脚本、写个复杂SQL等,GPT能够较好的执行结果,能够有效替代大量搜索引擎工作。

  • 面对复杂的决策场景,GPT通常只能接收到有限的信息,也缺乏历史经验的输入,几乎给不到有效的建议。

这让我想起了《萨利机长》中,机长在处理应急事件时的过程:在飞机因为鸟类撞击导致引擎失灵,副机长立即拿出了QRH(Quick Reference Handbook),找到对应章节,开始按照上面的操作步骤开始处理。在副机长执行了十几项动作后(据说大约有三页,但连第一页都没过完),机长一边check,一边做出了决策:降落哈德逊河 —— 一个完全超脱手册的判断,副机长一脸震惊。

这其实反映了安全行业特别有意思的一个现象:无论如何完备标准化处置能力,最终都还是会依靠人来完成最终决策。

而AI Agent能够在安全领域有什么帮助?它能将一个复杂任务拆分,既有利于观测过程,也有利于明确处理任务。

3、基于Agent的AI应用范式

首先,需要定义一下应用AI的目标。我认为是:尽可能模拟安全专家的决策过程,而不是追求更高的准召率。

安全本身就缺乏明确的定义,一起事件是入侵还是误报,最终还是需要交由人来决策。当安全专家穷尽各种方法也无法做出正确判断时,无法想象AI能够做出更准确的判断。因此,准召只能是AI应用的一个参照性指标,我们最终希望评判的还是,AI有多像人。

这个过程大体会分为几步:

1)所有动作的API化

Agent的重要特性之一就是能够于环境交互,具备灵活的输入输出能力,即感知(Perception)和行动(Action)部分。而将安全专家的各类操作API化,将是落地Agent的过程中工作量最大的一环。大概会需要经过一次内部的头脑风暴,把可能需要进行的操作给盘点出来。

以审查一次Web安全告警为例,可能会需要:

  • 查询来源IP的归属,判断是否恶意;

  • 查询当前业务的属性,是否安全相关;

  • 查询内部组织架构,判断IP和业务之间的相关性;

  • 查询该业务的过往请求,判断是否正常操作;

  • 查询该IP的后续请求,判断是否有进一步异常动作;

  • 查询告警规则,判断是否符合规则预期;

  • 进行尝试性封禁,判断攻击是否被阻断;

  • 获取近期客诉,判断是否存在误伤;

  • ……

这其中任何一环都可能是影响最终决策的关键信息输入,因此必须保障AI Agent具备主动查询并获取相应信息的能力。

2)过往记录初步形成知识库

团队内部经过长期运营沉淀下来的经验是十分宝贵的,摒弃这部分数据从0开始使用Agent就过于浪费了。因此,第二步是想办法将过去的零散知识汇总起来,变成Agent可以快速学习和参考的知识库。相对价值比较高的内容包括:已有的SOP、处理记录/复盘报告、数据查询报表、接口文档和案例等。

知识库的检索能力会决定AI Agent的能力上限。

知识库的官方称呼为RAG(Retrieval-Augmented Generation),比较经典的RAG实现为LangChain-Chatchat。大致原理如下:

更理想的RAG,应当能够根据人类的思维模式来进行分类检索。比如当你接到一项任务的时候,大致会尝试在脑海中检索两部分内容:相关的理论基础、相关的过往案例。基于这两部分内容,再结合通识逻辑进行推理,通常能够做出正确的决策来。

3)指导性的运营平台

AI Agent一定需要人工交互,才能够获得反馈,持续迭代自身。

总体来说,AI Agent的运算过程仍然是黑盒的,因此需要设定一些节点,让AI Agent主动跳出循环,等待安全专家的反馈,包括:规划设定、关键控制流、最终结果。在观看其他行业的AI Agent应用分享时,下图所示的人和AI的合作分工,我认为是比较符合预期的:

这个过程中,降低交互成本是需要核心考虑的因素。基于ChatGPT的成功,对话几乎是必然的一种形态。

4)可修正的处理记录

最后,需要让AI Agent对每次任务的处理过程进行摘要记录,并且人工对其中的偏差进行修正,形成一个完整的案例报告。

这个案例报告会被录入到知识库中,当AI Agent下次处理相似的任务时,会被检索出来,使得AI Agent会按照相似的逻辑进行处理。

总结来说,完整的AI Agent大致会长这样:

有了以上这些框架之后,AI Agent的雏形就基本具备了:1)能够在安全专家的指导下,完成特定的任务处理;2)能够将日常处理过程记录下来。

这个阶段,AI Agent的表现可能并不如预期,但随着记忆的不断积累,以及持续优化记忆检索的模式(如处理任务时,将匹配度最高、最成功的历史处理记录捞出来),AI Agent就可以进入持续学习领域知识,持续提升自身能力的正向循环。

4、Agent的正向意义

对Agent的正向意义再做一轮强调。

AI的目标是:尽可能模拟安全专家的决策过程,而不是追求更高的准召率。因此,不应当期望Agent落地之后,能够带来额外的能力增益。由于历史经验的不足,Agent甚至对提效的帮助也不会特别显著。

这个过程中,最大的意义,其实是促进日常工作的数字化。而只有数字化的程度足够高,才能够形成有效的经验积累,带动整个团队提升。

在没有Agent之前,大家其实也都在往这个方向努力。比如:

  • 投简历时,公司提供了极细致的简历模版(学历、年龄、工作经历、奖项等),让求职者填写各种标准字段;

  • 面试时,公司将能力考核项一项项列出来(专业能力、沟通能力、综合潜力等),要求面试官填写;

  • 事件复盘时,公司提供了用于刨根究底的复盘模版(事件发生时间、响应时间、止损时间、恢复时间等);

  • ……

但不得不承认的是,人工填写这些表单,是一件极其annoying的工作。因此,人性使然下,大家总是会耍各种小聪明,来降低这部分工作负担。最终往往导致,貌似有一个非常全面的机制,但执行质量却差强人意。

而AI Agent的出现,可以通过“对话”等形式,大幅度降低这部分工作的精力成本。个人认为,这才是AI Agent的最大意义。

5、结语

AI的发展大体是一个从简单白盒到复杂黑盒的过程,比如:从传统机器学习到深度学习、从RNN的标准Encoder-Decoder模式到GPT直接Decoder-only引领潮流。降低AI的应用和理解门槛,本身也是AI发展的重要趋势之一。

AI Agent似乎是让决策过程再次变得白盒。但细细品味,AI Agent实际上是将AI应用拔高了一个层面:过去只处理单个任务,现在要处理复杂作业,因此需要CoT的支撑。

大胆猜测,未来会出现一个通用的AI Agent(GPTs已经接近这个状态),大幅度降低AI Agent的落地门槛。随之而来,会出现多个Agent的协作机制:一个Agent扮演高阶决策者,其他Agent扮演不同的职能角色,进一步提升AI处理任务的复杂性。

就仿佛是一个公司的发展历程:单兵作战 -> 小团队作战 -> 多级管理团队。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1447678.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ //练习 6.27 编写一个函数,它的参数是initializer_list<int>类型的对象,函数的功能是计算列表中所有元素的和。

C Primer(第5版) 练习 6.27 练习 6.27 编写一个函数,它的参数是initializer_list类型的对象,函数的功能是计算列表中所有元素的和。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块…

现代化端口扫描工具RustScan

今天是大年初五,喜迎财神 ,祝大家✔️顺风顺水 ✔️诸事如意 ✔️财源滚滚 ✔️大吉大利 顺便提一下,老苏的博客启用了新域名: https://laosu.tech 什么是 RustScan ? RustScan 是一款现代化的端口扫描器。能快速找到端…

学生成绩管理系统|基于Springboot的学生成绩管理系统设计与实现(源码+数据库+文档)

学生成绩管理系统目录 目录 基于Springboot的学生成绩管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能模块 2、学生功能模块 3、教师功能模块 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源…

选台灯的正确指标?分享考公必备的护眼台灯

台灯作为家居类不可或缺的一种照明灯具,在我们的日常生活中发挥着重要作用,不管是学生党学习阅读,还是办公族加班工作等等,都离不开它的存在。不过台灯也是有着优劣之分的,如果使用了一款质量不好的台灯,时…

CTFshow web(php命令执行59-67)

web59 <?php /* # -*- coding: utf-8 -*- # Author: Lazzaro # Date: 2020-09-05 20:49:30 # Last Modified by: h1xa # Last Modified time: 2020-09-07 22:02:47 # email: h1xactfer.com # link: https://ctfer.com */ // 你们在炫技吗&#xff1f; if(isset($_POST…

AutoGen实战应用(三):多代理协作的数据可视化

之前我完成了关于AutoGen的两篇博客&#xff0c;还没有读过这两篇博客的朋友可以先阅读以下&#xff0c;这样有助于对AutoGen的初步了解&#xff1a; AutoGen实战应用(一)&#xff1a;代码生成、执行和调试_autogen 支持的model-CSDN博客 AutoGen实战应用(二)&#xff1a;多代…

Imgui(1) | 基于imgui-SFML改进自由落体小球

Imgui(1) | 基于imgui-SFML改进自由落体小球 0. 简介 使用 SFML 做2D图形渲染的同时&#xff0c;还想添加一个按钮之类的 GUI Widget, 需要用 Dear Imgui。由于 Imgui 对于2D图形渲染并没有提供类似 SFML 的 API, 结合它们两个使用是一个比较好的方法, 找到了 imgui-SFML 这个…

nvm 安装nodejs教程【详细】

目录 一、安装nvm 二、配置镜像 三、安装nodejs 安装 查看正在用的nodejs版本 切换版本 一、安装nvm 双击安装包&#xff1a; 无脑下一步即可&#xff0c;当然你可以自定义你自己的安装目录。 安装完后&#xff0c;打开环境变量&#xff0c;你会发现nvm为我们自动配置好…

【51单片机】定时器(江科大)

7.1定时器 1.定时器介绍: 51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成 2. 定时器作用: (1)用于计时系统,可实现软件计时,或者使程序每隔一固定时间完成一项操作 (2)替代长时间的Delay,提高CPU的运行效率和处理速度 定时器在单片机内部就像一个…

Rust入门:如何在windows + vscode中关闭程序codelldb.exe

在windows中用vscode单步调试rust程序的时候&#xff0c;发现无论是按下stop键&#xff0c;还是运行完程序&#xff0c;调试器codelldb.exe一直霸占着主程序不退出&#xff0c;如果此时对代码进行修改&#xff0c;后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…

javaspringbootMySQL高考志愿选择系统68335-计算机毕业设计项目选题推荐(附源码)

目 录 摘要 第1章 绪论 1.1 研究背景与意义 1.2 研究现状 1.3论文结构与章节安排 第2章 相关技术 2.1开发技术 2.2 Java简介 2.3 MVVM模式 2.4 B/S结构 2.5 MySQL数据库 2.6 SpringBoot框架介绍 第3章 系统分析 3.1 可行性分析 3.2 系统流程分析 3.2.1 数…

机械革命混合模式和独显直连互相切换

原文&#xff1a;https://blog.iyatt.com/?p13773 默认状态是混合输出&#xff0c;在任务管理器中可以看到两个 GPU&#xff0c;分别是核显和独显 从混合模式切换到独显直连可以通过机械革命电竞控制台&#xff08;重装过系统的需要去官网下载安装驱动&#xff09; 打开后…

4核8G服务器支持多少人同时在线访问?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

神经网络 | CNN 与 RNN——深度学习主力军

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本文主要将卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;这两个深度学习主力军进行对比。我们知道&#xff0c;从应用方面上来看&#xff0c;CNN 用于图像识别较多&#xff0c;而 RNN 用于…

leetcode(数组)128.最长连续序列(c++详细解释)DAY8

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 示例 1&a…

《UE5_C++多人TPS完整教程》学习笔记14 ——《P15 创建我们自己的子系统(Creating Our Own Subsystem)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P15 创建我们自己的子系统&#xff08;Creating Our Own Subsystem&#xff09;》 的学习笔记&#xff0c;该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版&#xff0c;UP主&…

GraphicsMagick 的 OpenCL 开发记录(结语)

所有代码及开发记录见&#xff1a;“gm-ocl”。

Covalent Network与卡尔加里大学建立合作,推动区块链技术创新

​Covalent Network&#xff08;CQT&#xff09;作为领先的 Web3 数据索引器和提供者&#xff0c;宣布已经与卡尔加里大学达成了具备开创性意义的合作&#xff0c;此次合作标志着推动区块链数据研究和可访问性的重要里程碑。卡尔加里大学是首个以验证者的身份加入 Covalent Net…

一、部署Oracle

部署Oracle 一、Docker部署1.Oracle11g1.1 测试环境1.1.1 拉取镜像1.1.2 启动容器1.1.3 配置容器环境变量1.1.4 修改sys、system用户密码1.1.5 创建表空间1.1.6 创建用户并授权1.1.5 使用DBeaver测试连接 二、安装包部署 一、Docker部署 1.Oracle11g 1.1 测试环境 当前只能用…

【分布式技术专题】「Zookeeper中间件」Paxos协议的原理和实际运行中的应用流程分析

Paxo算法介绍 Paxos算法是莱斯利兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法。 Paxos产生背景 Paxos算法是基于消息传递且具有高度容错特性的一致性算法&#xff0c;是目前公认的解决分布式一致性问题最有效的算法之一&#xff0c;其解决的问题就是在分…