AutoGen实战应用(三):多代理协作的数据可视化

news2025/1/18 4:48:27

之前我完成了关于AutoGen的两篇博客,还没有读过这两篇博客的朋友可以先阅读以下,这样有助于对AutoGen的初步了解:

AutoGen实战应用(一):代码生成、执行和调试_autogen 支持的model-CSDN博客

AutoGen实战应用(二):多代理协作(Multi-Agent Collaboration)-CSDN博客

 今天我们还是来学习AutoGen的多代理的应用开发,在上一篇博客中我们介绍了AutoGen的多代理协作的工作方式和原理,在这种工作方式中我们可以创建多个agent,并通过它们之间的共同协作来完成一个复杂的任务,为了让多个agent能够相互协作,我们需要让各个agent可以相关沟通交流,为此我们需要采用manager-broadcast多代理沟通机制,对manager-broadcast多代理沟通机制还不了解的朋友可以参考我上一篇博客,下面是manager-broadcast多代理沟通机制的示意图:

在manager-broadcast机制中我们会创建一个聊天组(GroupChat),然后我们将所有的agent都放入这个组中,同时我们还需要创建一个manager,它将作为组的管理员负责收/发组成员(agents)的消息。当某个agent需要和别的agent交流时,只需要向manager发送消息即可,而manager则会将该消息广播给所有其他组成员,这样就实现了agent之间的相互交流沟通,今天我们在manager-broadcast机制的基础上再介绍一个多代理生成可视化图表的例子,不过在介绍今天的内容之前我们需要完成AutoGen的环境配置。

 

一、环境配置

首先请新建一个python 3.8 以上版本的虚拟环境,并在命令行中执行以下安装命令:

pip install pyautogen

接下来我们需要导入autogen包,并配置openai的api_key:

import autogen
from google.colab import userdata


config_list = [
    {
        'model': 'gpt-4',
        'api_key': 'your_openai_api_key',#输入用户自己的api_key
    }
]

 

二,代理(agent)的组成

在这个列子中我们将完成下面这个任务:

“从这个地址:https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv 下载数据并绘制可视化图,告诉我weight和horsepower之间的关系。将绘图保存到文件中。在可视化数据集之前打印数据集中的所有字段。”

从这个任务描述中我们看到要完成这个任务,我们首先需要根据url下载一个csv数据文件,然后打印出数据文件中的所有字段,最后根据数据中的weight和horsepower字段来绘制散点图,并将其保存为一个文件。接下来我们针对该任务来构建如下这些代理:

  • User-Proxy: 用户代理,负责代表人类用户发布任务,执行Coder生成的代码,并反馈代码执行结果。
  • Coder: 编码员, 负责根据任务描述来生成完成任务所需要的代码。
  • Viz Critic: 评审员,负责评审Coder的代码,从多个维度对Coder生成代码进行评分,并提出代码修改意见(如果需要)

在这个例子中我们增加了一个代码评审员,它的作用是用来审查代码质量,这样可以进一步提高完成任务的效率,下面我们来创建所有的agent和groupchat,和manager:

llm_config = {"config_list": config_list, "cache_seed": 42}
user_proxy = autogen.UserProxyAgent(
    name="User_proxy",
    system_message="A human admin.",
    code_execution_config={
        "last_n_messages": 3,
        "work_dir": "groupchat",
        "use_docker": False,
    },  # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.
    human_input_mode="NEVER",
)
coder = autogen.AssistantAgent(
    name="Coder",  # the default assistant agent is capable of solving problems with code
    llm_config=llm_config,
)
critic = autogen.AssistantAgent(
    name="Critic",
    system_message="""Critic. You are a helpful assistant highly skilled in evaluating the quality of a given visualization code by providing a score from 1 (bad) - 10 (good) while providing clear rationale. YOU MUST CONSIDER VISUALIZATION BEST PRACTICES for each evaluation. Specifically, you can carefully evaluate the code across the following dimensions
- bugs (bugs):  are there bugs, logic errors, syntax error or typos? Are there any reasons why the code may fail to compile? How should it be fixed? If ANY bug exists, the bug score MUST be less than 5.
- Data transformation (transformation): Is the data transformed appropriately for the visualization type? E.g., is the dataset appropriated filtered, aggregated, or grouped  if needed? If a date field is used, is the date field first converted to a date object etc?
- Goal compliance (compliance): how well the code meets the specified visualization goals?
- Visualization type (type): CONSIDERING BEST PRACTICES, is the visualization type appropriate for the data and intent? Is there a visualization type that would be more effective in conveying insights? If a different visualization type is more appropriate, the score MUST BE LESS THAN 5.
- Data encoding (encoding): Is the data encoded appropriately for the visualization type?
- aesthetics (aesthetics): Are the aesthetics of the visualization appropriate for the visualization type and the data?

YOU MUST PROVIDE A SCORE for each of the above dimensions.
{bugs: 0, transformation: 0, compliance: 0, type: 0, encoding: 0, aesthetics: 0}
Do not suggest code.
Finally, based on the critique above, suggest a concrete list of actions that the coder should take to improve the code.
""",
    llm_config=llm_config,
)

groupchat = autogen.GroupChat(agents=[user_proxy, coder, critic], messages=[], max_round=20)
manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)

这里需要说明的是,这里我们创建了3个agent,1个groupchat组,1个groupchat组的管理员manager, 为了让所有的agent可以相互之间沟通交流,我们把3个agent都放置到了groupchat组中,这样只要某个agent向manager发送消息,groupchat组中的其他agent都能收到消息,这样就实现了agent之间的相互沟通和协作,这里我们还需要说明一下agent中的critic这个角色的作用,我们将其system_message翻译成中文,这样便于大家更好的理解:

从上面的critic的system_message中我们看到critic充当了一个代码质量评审员的角色,它负责从bugs、transformation、compliance等6个维度来对coder生成的代码进行评审,并给出分数和代码修改建议。

三、执行任务

接下来我们开始执行人类的任务,首先我们让User-Proxy发布任务:

user_proxy.initiate_chat(
    manager,
    message="""
    从这个地址:https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv 下载数据并绘制可视化图,
    告诉我weight和horsepower之间的关系。将绘图保存到文件中。在可视化数据集之前打印数据集中的所有字段。
    """
)

这里需要说明的是user_proxy是给manager发送一个任务的message,这样Coder和critic都能收到这个消息,coder会根据任务的要求生成代码,critic则会评审coder生成的代码,而user_proxy则会执行代码,并反馈代码执行结果,下面我们来看看实际的执行过程:

下面我们来分析一下该任务的执行过程:

  1. user_proxy发布任务以后,
  2. Coder生成代码(打印所有字段),
  3. user_proxy执行代码并反馈结果,
  4. Coder生成代码(生成统计图表,并保存文件),
  5. user_proxy执行代码并反馈结果,
  6. Critic评审代码,给出分数
  7. user_proxy再次执行代码并反馈结果。
  8. Coder 确认执行结果,并给出任务完成标记“TERMINATE”

这里你也许会发现每次Coder生成代码以后, user_proxy抢在Critic评审代码之前先执行了代码,这似乎有点不合理,正确的流程应该是当Coder生成代码以后,Critic先评审代码,如果评审结果OK,那么user_proxy再执行代码,如果评审结果不OK,那么Coder应该修改代码,直至评审结果全部OK以后,user_proxy再来执行代码。我想对于这个问题我们可以修改user_proxy的system_message,让user_proxy必须在Critic评审完代码并确认评审结果OK的情况下再执行代码。读者可以尝试着修改一下user_proxy的system_message看看能否实现这样的逻辑。下面我们看看user_proxy执行代码后生成的图片内容:

四、查看保存的图片

from IPython.display import Image

Image(filename="groupchat/weight_vs_horsepower.png")

 总结

今天我们进一步加深了对多代理协作原理的理解,并在此基础上实现了数据的下载分析以及可视化,需要说明的是manager-broadcast机制是一种最基本的多代理协作的工作方式,为了适应一些更为复杂的应用场景,还有一些复杂的AutoGen多代理协作的工作方式,将会在以后的博客中介绍,希望今天的内容对大家学习AutoGen会有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1447665.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Imgui(1) | 基于imgui-SFML改进自由落体小球

Imgui(1) | 基于imgui-SFML改进自由落体小球 0. 简介 使用 SFML 做2D图形渲染的同时,还想添加一个按钮之类的 GUI Widget, 需要用 Dear Imgui。由于 Imgui 对于2D图形渲染并没有提供类似 SFML 的 API, 结合它们两个使用是一个比较好的方法, 找到了 imgui-SFML 这个…

nvm 安装nodejs教程【详细】

目录 一、安装nvm 二、配置镜像 三、安装nodejs 安装 查看正在用的nodejs版本 切换版本 一、安装nvm 双击安装包: 无脑下一步即可,当然你可以自定义你自己的安装目录。 安装完后,打开环境变量,你会发现nvm为我们自动配置好…

【51单片机】定时器(江科大)

7.1定时器 1.定时器介绍: 51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成 2. 定时器作用: (1)用于计时系统,可实现软件计时,或者使程序每隔一固定时间完成一项操作 (2)替代长时间的Delay,提高CPU的运行效率和处理速度 定时器在单片机内部就像一个…

Rust入门:如何在windows + vscode中关闭程序codelldb.exe

在windows中用vscode单步调试rust程序的时候,发现无论是按下stop键,还是运行完程序,调试器codelldb.exe一直霸占着主程序不退出,如果此时对代码进行修改,后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…

javaspringbootMySQL高考志愿选择系统68335-计算机毕业设计项目选题推荐(附源码)

目 录 摘要 第1章 绪论 1.1 研究背景与意义 1.2 研究现状 1.3论文结构与章节安排 第2章 相关技术 2.1开发技术 2.2 Java简介 2.3 MVVM模式 2.4 B/S结构 2.5 MySQL数据库 2.6 SpringBoot框架介绍 第3章 系统分析 3.1 可行性分析 3.2 系统流程分析 3.2.1 数…

机械革命混合模式和独显直连互相切换

原文:https://blog.iyatt.com/?p13773 默认状态是混合输出,在任务管理器中可以看到两个 GPU,分别是核显和独显 从混合模式切换到独显直连可以通过机械革命电竞控制台(重装过系统的需要去官网下载安装驱动) 打开后…

4核8G服务器支持多少人同时在线访问?

腾讯云4核8G服务器支持多少人在线访问?支持25人同时访问。实际上程序效率不同支持人数在线人数不同,公网带宽也是影响4核8G服务器并发数的一大因素,假设公网带宽太小,流量直接卡在入口,4核8G配置的CPU内存也会造成计算…

神经网络 | CNN 与 RNN——深度学习主力军

Hi,大家好,我是半亩花海。本文主要将卷积神经网络(CNN)和循环神经网络(RNN)这两个深度学习主力军进行对比。我们知道,从应用方面上来看,CNN 用于图像识别较多,而 RNN 用于…

leetcode(数组)128.最长连续序列(c++详细解释)DAY8

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 示例 1&a…

《UE5_C++多人TPS完整教程》学习笔记14 ——《P15 创建我们自己的子系统(Creating Our Own Subsystem)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P15 创建我们自己的子系统(Creating Our Own Subsystem)》 的学习笔记,该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版,UP主&…

GraphicsMagick 的 OpenCL 开发记录(结语)

所有代码及开发记录见:“gm-ocl”。

Covalent Network与卡尔加里大学建立合作,推动区块链技术创新

​Covalent Network(CQT)作为领先的 Web3 数据索引器和提供者,宣布已经与卡尔加里大学达成了具备开创性意义的合作,此次合作标志着推动区块链数据研究和可访问性的重要里程碑。卡尔加里大学是首个以验证者的身份加入 Covalent Net…

一、部署Oracle

部署Oracle 一、Docker部署1.Oracle11g1.1 测试环境1.1.1 拉取镜像1.1.2 启动容器1.1.3 配置容器环境变量1.1.4 修改sys、system用户密码1.1.5 创建表空间1.1.6 创建用户并授权1.1.5 使用DBeaver测试连接 二、安装包部署 一、Docker部署 1.Oracle11g 1.1 测试环境 当前只能用…

【分布式技术专题】「Zookeeper中间件」Paxos协议的原理和实际运行中的应用流程分析

Paxo算法介绍 Paxos算法是莱斯利兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法。 Paxos产生背景 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一,其解决的问题就是在分…

anomalib1.0学习纪实

回顾:细分、纵深、高端、上游、积累、极致。 回顾:资本化,国际化,大干快上,小农思维必死无疑。 春节在深圳新地中央,学习anomalib1.0。 一、安装: 采用的是如下图的方式: 不过&a…

专业140+总分420+浙江大学842信号系统与数字电路考研经验电子信息与通信,真题,大纲,参考书。

今年考研已经结束,初试专业课842信号系统与数字电路140,总分420,很幸运实现了自己的目标,被浙大录取,这在高考是想都不敢想的学校,在考研时实现了,所以大家也要有信心,通过自己努力实…

Javaweb之SpringBootWeb案例之propagation属性案例演示的详细解析

案例 接下来我们就通过一个案例来演示下事务传播行为propagation属性的使用。 需求:解散部门时需要记录操作日志 由于解散部门是一个非常重要而且非常危险的操作,所以在业务当中要求每一次执行解散部门的操作都需要留下痕迹,就是要记录操作…

svg基础(十)滤镜-feMerge(多滤镜叠加滤镜)

feMerge:多滤镜叠加滤镜 允许同时应用滤镜效果而不是按顺序应用滤镜效果。利用result存储别的滤镜的输出可以实现这一点&#xff0c;然后在一个 <feMergeNode>子元素中访问它 1 语法 <feMerge><feMergeNode in""></feMergeNode> </feM…

去除vue自带的边距

使用vue时发现总有去不掉的外边距&#xff0c;在index.vue里面怎样设置样式都不管用 查阅资料后发现要在vue项目自带的index.html文件内添加下面的样式代码才行 <style>*{margin: 0;padding: 0;}body,html{margin: 0;padding: 0;} </style>

Vue项目创建和nodejs使用

Vue项目创建和nodejs使用 一、环境准备1.1.安装 node.js【下载历史版本node-v14.21.3-x64】1.2.安装1.3.检查是否安装成功&#xff1a;1.4.在Node下新建两个文件夹 node_global和node_cache并设置权限1.5.配置npm在安装全局模块时的路径和缓存cache的路径1.6.配置系统变量&…