Pandas教程12:常用的pd.set_option方法,显示所有行和列+不换行显示等等...

news2025/1/25 7:20:50

---------------pandas数据分析集合---------------
Python教程71:学习Pandas中一维数组Series
Python教程74:Pandas中DataFrame数据创建方法及缺失值与重复值处理
Pandas数据化分析,DataFrame行列索引数据的选取,增加,修改和删除操作
Pandas教程05:DataFrame数据常用属性和方法汇总
Pandas教程06:DataFrame.merge数据的合并处理
Pandas教程07:DataFrame数据的算术运算+逻辑运算+describe()方法+统计函数+自定义函数运算
Pandas教程08:教你DataFrame数据的条件筛选——精选篇
Pandas教程09:使用date_range函数,创建时间序列数据
Pandas教程10:DataFrame数据可视化绘制折线图、柱状图、散点图、饼形图
Pandas教程11:关于pd.DataFrame.shift(1)数据下移的示例用法

1.常用的pd.set_option方法:主要用于设置DataFrame的显示输出。在读取到Excel文件或csv文件后,往往会出现数据显示不全(如图)等问题,有时候会影响我们对数据的判断。使用这个函数后,能够帮助我们更好的显示数据,帮助我们更快的认识数据,能够节省不少时间。

# @Author : 小红牛
# 微信公众号:WdPython
import pandas as pd

# 1.显示行列数  
# pd.set_option('display.max_columns', None) # 显示所有列
pd.set_option('display.max_columns', 5)  # 最多显示5列

# pd.set_option('display.max_rows', None) # 显示所有行
pd.set_option('display.max_rows', 10)  # 最多显示10行


# 2.设置显示数值的精度,如保留两位小数
pd.set_option('display.precision', 2)
# pd.options.display.precision = 2

# 3.数字格式化显示
# 如将1.880128e+08转换成188,012,757.18395028全部显示
pd.set_option('display.float_format', '{:,}'.format)

# 设置数字精度,保留几位小数
pd.set_option('display.float_format', '{:,.2f}'.format)
# 带百分号格式化显示
pd.set_option('display.float_format', '{:.2f}%'.format)

#4.True表示列可以换行显示。设置成False的时候不允许换行显示
pd.set_option('expand_frame_repr', True)

# 5.改变字段的宽度,默认50字符。有的值字符过长就会显示省略号。
pd.set_option('display.max_colwidth', 200)
#pd.options.display.max_colwidth = 200

# 6.设置列标题居中对齐,left':左对齐,right': 右对齐
pd.set_option('display.colheader_justify', 'center')

# 7. pd.describe_option()  # 展示所有设置和描述
# 具体的搜索
pd.describe_option('rows')

# 8.重置所有设置选项
pd.reset_option('all')

2.举例说明,先使用numpy生成一个100行15列的DataFrame数据,然后打印一下前后的数据。其他的自己试一下,这里只演示行列的显示设置。

# @Author : 小红牛
# 微信公众号:WdPython
import pandas as pd
import numpy as np

# 生成一个100行10列的DataFrame,其中每个元素都是0到100之间的随机数
df = pd.DataFrame(np.random.uniform(low=0, high=101, size=(100, 10)))

print('1.显示原始DataFrame数据'.center(50, '-'))
print(df)

print('2.添加option条件后的,DataFrame数据'.center(50, '-'))
# pd.set_option('display.max_columns', None) # 显示所有列
pd.set_option('display.max_columns', 5)  # 最多显示5列

# pd.set_option('display.max_rows', None) # 显示所有行
pd.set_option('display.max_rows', 10)  # 最多显示10行
print(df)

输出内容

----------------1.显示原始DataFrame数据-----------------
            0          1          2  ...          7          8          9
0   40.245405   9.521260  15.032271  ...  48.591873  21.890877  90.859123
1    4.097217  63.141219  98.024709  ...  51.325570  50.781432  67.728231
2    3.735974   2.090721  94.227408  ...  96.841463  46.973768  19.839550
3    2.107308  78.409608  77.497758  ...   4.105250  20.998882  96.287974
4   82.798062  88.370363  23.702463  ...  49.260836  55.189386  10.860411
..        ...        ...        ...  ...        ...        ...        ...
95  15.506104   3.243376  12.609004  ...  78.510960  79.652707  99.922600
96  86.672322  23.761919  98.914231  ...  99.089989  54.030815  32.052257
97  64.865497  83.369811  49.815126  ...  39.617417  41.704144  89.365925
98   6.374077  84.936184  10.331111  ...  43.039300  59.455058  75.464257
99   4.194443  36.074548  90.858682  ...  73.934862  76.414062  49.877312

[100 rows x 10 columns]
-------------2.添加option条件后的,DataFrame数据-------------
            0          1  ...          8          9
0   40.245405   9.521260  ...  21.890877  90.859123
1    4.097217  63.141219  ...  50.781432  67.728231
2    3.735974   2.090721  ...  46.973768  19.839550
3    2.107308  78.409608  ...  20.998882  96.287974
4   82.798062  88.370363  ...  55.189386  10.860411
..        ...        ...  ...        ...        ...
95  15.506104   3.243376  ...  79.652707  99.922600
96  86.672322  23.761919  ...  54.030815  32.052257
97  64.865497  83.369811  ...  41.704144  89.365925
98   6.374077  84.936184  ...  59.455058  75.464257
99   4.194443  36.074548  ...  76.414062  49.877312

[100 rows x 10 columns]

完毕!!感谢您的收看

----------★★历史博文集合★★----------
我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1446105.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

matlab发送串口数据,并进行串口数据头的添加,我们来看下pwm解析后并通过串口输出的效果

uintt16位的话会在上面前面加上00,16位的话一定是两个字节,一共16位的数据 如果是unint8的话就不会, 注意这里给的是13,但是现实的00 0D,这是大小端的问题,在matlanb里设置,我们就默认用这个模式…

python 笔记:shapely(形状篇)

主要是点(point)、线(linestring)、面(surface) 1 基本方法和属性 object.area 返回对象的面积(浮点数) object.bounds 返回一个(minx, miny, maxx, maxy)元…

基于Python的HTTP隧道安全性分析:魔法背后的锁与钥匙

当我们谈论基于Python的HTTP隧道时,不禁让人想起那些神秘的魔法门。但是,在魔法背后,我们也需要确保安全性,就像需要确保魔法不会落入邪恶之手一样。那么,基于Python的HTTP隧道在安全性方面表现如何呢?让我…

【Java程序设计】【C00270】基于Springboot的moba类游戏攻略分享平台(有论文)

基于Springboot的moba类游戏攻略分享平台(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的游戏攻略分享平台 本系统分为系统功能模块、管理员功能模块、以及用户后台功能模块。 系统功能模块:在平台首…

[VulnHub靶机渗透] Nyx

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏…

【Java程序设计】【C00253】基于Springboot的在线考试管理系统(有论文)

基于Springboot的在线考试管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的在线考试系统 本系统分为系统功能模块、管理员功能模块以及用户功能模块。 系统功能模块:系统登录,管理…

综合项目---博客

一.运行环境 192.168.32.132 Server-Web linux Web 192.168.32.133 Server-NFS-DNS linux NFS/DNS 基础配置 1.配置主机名静态ip 2.开启防火墙并配置 3.部分开启selinux并配置 4.服务器之间通过阿里云进行时间同步 5.服务器之间实现ssh免密…

牛客——递归实现组合型枚举(枚举,dfs)

链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 从 1~n 这 n 个整数中随机选出 m 个,输出所有可能的选择方案。n>0n \gt 0n>0, 0≤m≤n0 \leq m \leq n0≤m≤n, n(n−m)≤25n(n-m)\leq 25n(n−m)≤25。 输入描述…

大白话 ChatGPT 技术原理

▼最近直播超级多,预约保你有收获 近期直播:《Agent 企业级应用案例实战》 —1— ChatGPT 大模型如何完成训练的? ChatGPT 大模型训练分为以下3个步骤: 第一步、Pretraining 预训练。 给大模型海量的文本进行训练,99%…

申请SSL证书怎么进行域名验证?域名验证的三种方式

SSL证书是用于加密和保护Web服务器和浏览器之间通信的数字证书,在申请SSL证书时,为了防止域名被冒用,对于申请SSL证书的域名,要求先验证这个域名的所有权。而目前可用的域名验证SSL证书方式有三种:分别是DNS验证、邮箱…

【Java程序设计】【C00264】基于Springboot的原创歌曲分享平台(有论文)

基于Springboot的原创歌曲分享平台(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的原创歌曲分享平台 本系统分为平台功能模块、管理员功能模块以及用户功能模块。 平台功能模块:在平台首页可以查看首…

利用Windows10漏洞破解密码(保姆级教学)

前言: 本篇博客只是技术分享并非非法传播知识,实验内容均是在虚拟机中进行,并非真实环境 正文: 一.windows10电脑密码破解 1)开启windows10虚拟机,停留在这个页面 2)按5次Shift键,出现这个粘滞键,如果没有出现的,则说明漏洞已经修复 3)重新启动,在这个页面的时候…

【Java程序设计】【C00257】基于Springboot的校园二手书交易平台(有论文)

基于Springboot的校园二手书交易平台(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的乐校园二手书交易管理系统 本系统分为系统功能模块、管理员功能模块、卖家用户功能模块以及用户功能模块。 系统功能模块&…

CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

正文共:1333 字 21 图,预估阅读时间:2 分钟 上次我们在Windows上尝试用Tesla M4配置深度学习环境(TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?),但是失败了。考虑到Windows…

【思科ssh】思科模拟器配置ssh登录

配置路由器的名称为R1 配置路由器的域名为aaa.com 使用rsa来加密传输数据,密钥位数为2048 配置登录用户名为cj,密码为123456 只允许ssh登录,不能以其他方式登录 本地验证

HarmonyOS 鸿蒙 ArkTS ArkUI 页面之间切换转换动画设置

第一步:导入 import promptAction from ohos.promptAction 第二步:在build下方写入 pageTransition(){PageTransitionEnter({ duration: 1200 }).slide(SlideEffect.Right)PageTransitionExit({ delay: 100 }).translate({ x: 100.0, y: 100.0 }).opac…

Vue核心基础4:绑定样式、条件渲染、列表渲染

1 绑定样式 【代码】 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>绑定样式</title><s…

机器学习9-随机森林

随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法&#xff0c;用于改善单一决策树的性能&#xff0c;通过在数据集上构建多个决策树并组合它们的预测结果。它属于一种被称为“集成学习”或“集成学习器”的机器学习范畴。 以下是随机森林的主要特点和原理&…

3分钟部署完成Docker Registry及可视化管理工具Docker-UI

安装docker-registry 由于镜像文件会非常占用空间&#xff0c;因此需要选择一个磁盘充裕的位置来存放镜像数据。 这里设置为&#xff1a;-v /data/registry:/var/lib/registry&#xff0c;其中/data/registry是宿主机存放数据的位置。 docker run -d -p 5000:5000 --restart…

【EAI 019】Eureka: Human-Level Reward Design via Coding LLM

论文标题&#xff1a;Eureka: Human-Level Reward Design via Coding Large Language Models 论文作者&#xff1a;Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar 作者单位&#xff…