嵌入式中《C++之旅》阅读笔记

news2025/1/25 4:30:34

constexpr

constexpr的隐含意思是在编译阶段求值,对于一些求值操作,如果声明为constexpr,那么会编译器会尝试在编译阶段进行计算求值,如果求值成功,则用结果进行替换。

一个常用的例子是如下:

constexpr int factorial(int n) {
    return n <= 1 ? 1 : (n * factorial(n - 1));
}

int main() {
  auto num = factorial(10); // 编译阶段求得值,可从汇编查看
  return 0;
}

如果一个变量声明为constexpr,那么意味着在编译阶段就要获得其值,比如如下这个例子:

#include <iostream>


constexpr int factorial(int n) {
    return n <= 1 ? 1 : (n * factorial(n - 1));
}

int main() {
   int i = 10;
   constexpr auto num = factorial(i);
   return 0;
}

因为num被声明为constexpr,所以正如前面所说,在编译阶段求值,又因为i是一个非常量表达式,所以编译器报错如下:

<source>: In function 'int main()':
<source>:10:35: error: the value of 'i' is not usable in a constant expression
   10 |    constexpr auto num = factorial(i);
      |                                   ^
<source>:9:8: note: 'int i' is not const
    9 |    int i = 10;
      |        ^
Compiler returned: 1

if语句初始化

这个是自C++17才支持的,可以在if语句中进行初始化,随后进行条件判断,如下:

if (int a = 0; a != 10);

也可以像下面这样:

std::vector<int> v;
// operation
if (auto size = v.size()); 

引用赋值不会改变其初始指向

示例:

int x = 2, y = 3;
int &r1 = x;
int &r2 = y;
r1 = r2;
std::cout << x  << " " << y << " " <<  r1 << " " << r2;

在上述代码中,虽然最后r1被赋值为r2,但是其仍然指向x,这样的结果就是x的值也被修改了。最后输出结果为3 3 3 3

enum vs enum类

传统的enum,如果像下面这样定义:

enum Colors {
    Red,
    Green,
    Blue
  };
  
  enum OtherColors {
    Yellow,
    Blue
  };

编译器会报如下错误:

<source>:16:5: error: 'Blue' conflicts with a previous declaration
   16 |     Blue
      |     ^~~~
<source>:11:5: note: previous declaration 'Colors Blue'
   11 |     Blue
      |     ^~~~

为了解决这个问题,引入了enum class,如下:

enum class Colors {
    Red,
    Green,
    Blue
  };
  
  enum class OtherColors {
    Yellow,
    Blue
  };

modules

示例如下:

// Vector.h:

class Vector {
 public:
  Vector(int s);
  double& operator[](int i);
  int size();
 private:
  double∗ elem; // elem points to an array of sz doubles
  int sz;
};

// Vector.cpp:

#include "Vector.h" // get Vector’s interface
Vector::Vector(int s) :elem{new double[s]}, sz{s} {
}
double& Vector::operator[](int i) {
  return elem[i];
}
int Vector::size() {
  return sz;
}

// user.cpp

#include "Vector.h" // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()
double sqrt_sum(Vector& v) {
  double sum = 0;
  for (int i=0; i!=v.siz e(); ++i)
  sum+=std::sqr t(v[i]); // sum of square roots
  return sum;
}

最终格式如下:

图片

可以单独对user.cpp 和 Vector.cpp编译,生成.o文件,这是因为上述示例使用了#include操作,预处理器在遇到#include的时候,会将其中的内容完整的拷贝一份到相应的文件,这就导致每个.cpp都有头文件Vector.h的一个副本,代码体积膨胀不说,还增加了编译时间。

为了解决上述问题,引入了modules,使用module优化上述代码,如下:

// Vector.cpp

module;
export module Vector; // defining the module called "Vector"
export class Vector {
 public:
  Vector(int s);
  double& operator[](int i);
  int size();
 private:
  double∗ elem; // elem points to an array of sz doubles
  int sz;
};

Vector::Vector(int s) :elem{new double[s]}, sz{s} {
}
double& Vector::operator[](int i) {
return elem[i];
}
int Vector::siz e() {
return sz;
}
expor t int size(const Vector& v) { return v.siz e(); }

// user.cpp

import Vector; // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()
double sqrt_sum(Vector& v) {
  double sum = 0;
  for (int i=0; i!=v.siz e(); ++i)
  sum+=std::sqr t(v[i]); // sum of square roots
  return sum;
}

对于这块的内容,可以详细阅读之前的文章:

未来已来:C++ modules初探

纯虚函数

如果其中一个成员函数使用= 0,那么该函数为纯虚函数,继承于存在纯虚函数的子类,其必须实现该函数:

class Base {
 public:
  void fun() = 0;
};

class Derived : public Base {
 public:
  void fun() {}
}

如果声明一个存在纯虚函数的类,那边编译器会报错如下:

<source>:21:8: error: initializer specified for non-virtual method 'void Base::fun()'
   21 |   void fun() = 0;
      |        ^~~

派生

判断一个类是否继承于另外一个类,可以使用如下方式:

template<typename Base, typename T>
inline bool IsDerivedOf(T *ptr) {
  return dynamic_cast<Base*>(ptr) != nullptr;
}

智能指针

智能指针可以避免内存泄漏,此处文章较多,可以参考:

智能指针-使用、避坑和实现

一次诡异的内存泄漏

显式构造

对于如下这种:

class Vector {
 public:
  Vector(int sz);
}

可以使用Vector v = 3;这种方式进行初始化,往往这种并不是我们希望看到的,所以可以使用关键字explicit来强制显式初始化:

class Vector {
 public:
 explicit Vector(int sz);
}

move语义

自C++11起引入了move语义,不过这个很容易引起初学者的误解,其实move()本身并不做任何操作,其只是进行了简单的类型转换,而真正的移动操作需要类实现者进行定义。

STL对其定义如下:

template<typename _Tp>
    constexpr typename std::remove_reference<_Tp>::type&&
    move(_Tp&& __t) noexcept
    { return static_cast<typename std::remove_reference<_Tp>::type&&>(__t); }

如果需要深入了解其特性,可以参考文章:

【Modern C++】深入理解移动语义

CTAD

CTAD为Class Template Argument Deduction的缩写,中文称为类模板参数推导,在C++17之前,我们需要像下面这样写:

std::pair<int, double> p1 = {1, 3.41};

现在我们可以如下这样写:

std::pair              p2 = {1, 3.41};

可以参考文章【ModernCpp】新特性之CTAD

字面量

如果我们像下面这样写:

auto s = "hello";

s会被编译器推导为const char*,为了使得其为std::string类型,有以下几种方式:

auto s1 = std::string("hello");
std::string s2 = "hello";
auto s3 = "hello"s;

前两种方式比较常见,第三种方式是Modern cpp的新特性,俗称字面量。在这个语法中,"hello"是字符串字面值,而"s"是用户定义字面量的后缀,它将字符串字面值转换为std::string对象。

COW VS SSO

COW,想必大家都清楚其原理,这个机制很常用,比较常见的如fork等操作,在STL中也有用到这个,比如gcc5.1之前的string中,先看如下代码:

std::string s("str");
 std::string s1 = s;
 char *p = const_cast<char*>(s1.data());
 p[2] = '\0';
 
 std::cout << s << std::endl;
 std::cout << s1 << std::endl;

输出结果无非以下两种:

st
st

或者

str
st

第一种基于gcc5.1前的版本编译,第二种输出基于5.1之后的版本编译,这两个输出的不同正是源于gcc5.1之前的版本对于string的复制采用了COW操作。

自gcc5.1之后,字符串优化采用了新的机制,即SSO,其为Small String Optimization的简写,中文译为小字符串优化,基本原理是:当分配大小小于16个字节时候,从栈上进行分配,而如果大于等于16个字节,则在堆上进行内存分配

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1445442.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux笔记之Docker进行镜像备份与迁移

Linux笔记之Docker进行镜像备份与迁移 ——2024-02-11 code review! 文章目录 Linux笔记之Docker进行镜像备份与迁移1. 导出容器文件系统为 tar 归档文件2. 将 tar 归档文件导入为新的 Docker 镜像3. 运行新的 Docker 镜像并创建容器 1. 导出容器文件系统为 tar 归档文件 要导…

【漏洞复现】狮子鱼CMS文件上传漏洞(image_upload.php)

Nx01 产品简介 狮子鱼CMS&#xff08;Content Management System&#xff09;是一种网站管理系统&#xff0c;它旨在帮助用户更轻松地创建和管理网站。该系统拥有用户友好的界面和丰富的功能&#xff0c;包括页面管理、博客、新闻、产品展示等。通过简单直观的管理界面&#xf…

第5讲小程序微信用户登录实现

小程序微信用户登录实现 小程序登录和jwt&#xff0c;httpclient工具类详细介绍可以看下小锋老师的 小程序电商系统课程&#xff1a;https://www.bilibili.com/video/BV1kP4y1F7tU application.yml加上小程序登录需要的参数&#xff0c;小伙伴们可以登录小程序后台管理&#…

依赖注入的艺术:编写可扩展 JavaScript 代码的秘密

1. 依赖注入 在 JavaScript 中&#xff0c;依赖注入&#xff08;Dependency Injection&#xff0c;简称 DI&#xff09;是一种软件设计模式&#xff0c;通过这种模式&#xff0c;可以减少代码模块之间的紧耦合。依赖注入允许开发者将模块的依赖关系从模块的内部转移到外部&…

【STL】vector模拟实现

vector模拟实现 一、vector函数接口总览二、vector当中的成员介绍三、list模拟实现1、默认成员函数&#xff08;1&#xff09;构造函数1&#xff08;2&#xff09;构造函数2&#xff08;3&#xff09;构造函数3 2、拷贝构造函数&#xff08;1&#xff09;写法一&#xff1a;老式…

最新酒桌小游戏喝酒小程序源码,带流量主,附带搭建教程

喝酒神器&#xff0c;增加了广告位&#xff0c;根据文档直接替换即可&#xff0c;原版本没有广告位 直接上传源码到开发者端即可 通过后改广告代码&#xff0c;然后关闭广告展示提交&#xff0c;通过后打开即可 搜索adunit-848e5f13d1ff237a替换为你的Banner 搜索adunit-597…

Linux操作系统基础(十一):RPM软件包管理器

文章目录 RPM软件包管理器 一、rpm包的卸载 二、rpm包的安装 RPM软件包管理器 rpm&#xff08;英文全拼&#xff1a;redhat package manager&#xff09; 原本是 Red Hat Linux 发行版专门用来管理 Linux 各项软件包的程序&#xff0c;由于它遵循GPL规则且功能强大方便&…

Python中使用opencv-python进行人脸检测

Python中使用opencv-python进行人脸检测 之前写过一篇VC中使用OpenCV进行人脸检测的博客。以数字图像处理中经常使用的lena图像为例&#xff0c;如下图所示&#xff1a; 使用OpenCV进行人脸检测十分简单&#xff0c;OpenCV官网给了一个Python人脸检测的示例程序&#xff0c;…

sympy斐波那契数列

文章目录 fibonaccitribonacci对比 fibonacci 斐波那契数列的递推公式大家都很熟悉了&#xff0c;是 F n F n − 1 F n − 2 F_nF_{n-1}F_{n-2} Fn​Fn−1​Fn−2​&#xff0c;其在复数域的的解析延拓可表示为 F z ϕ z − cos ⁡ ( π z ) ϕ − z 5 , ϕ 5 − 1 2 F_z\…

3D高斯溅射:面向三维场景的实时渲染技术

1. 前言 高斯溅射技术【1】一经推出&#xff0c;立刻引起学术界和工业界的广泛关注。相比传统的隐式神经散射场渲染技术&#xff0c;高斯溅射依托椭球空间&#xff0c;显性地表示多目图像的三维空间关系&#xff0c;其计算效率和综合性能均有较大的提升&#xff0c;且更容易理…

电动汽车上哪些部位用到了电机?

一、背景 电动汽车中除了主驱动电机之外的其他电机的控制复杂度因电机的种类和功能而异。 一般来说&#xff0c;助力转向电机、空调风扇电机、冷却水泵电机等辅助电机的控制相对较为简单。这些电机通常只需要进行简单的开/关控制或速度调节&#xff0c;以满足车辆的基本需求。…

第三百一十七回

文章目录 1. 概念介绍2. 实现方法2.1 hintText2.2 labelText2.3 controller 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何在输入框中处理光标"相关的内容&#xff0c;本章回中将介绍如何添加输入框默认值.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1.…

《Linux 简易速速上手小册》第6章: 磁盘管理与文件系统(2024 最新版)

文章目录 6.1 磁盘分区与格式化6.1.1 重点基础知识6.1.2 重点案例&#xff1a;为新硬盘配置分区和文件系统6.1.3 拓展案例 1&#xff1a;创建交换分区6.1.4 拓展案例 2&#xff1a;使用 LVM 管理分区 6.2 挂载与卸载文件系统6.2.1 重点基础知识6.2.2 重点案例&#xff1a;挂载新…

ChatGPT高效提问—prompt常见用法(续篇)

ChatGPT高效提问—prompt常见用法&#xff08;续篇&#xff09; ​ 对话式prompt适用于模拟各种交流情境。若我们意图探索在特殊场合下可能出现的对话情景&#xff0c;或者模拟一段对话流程&#xff0c;可以采用这种方法&#xff0c;通过精准的prompt指令&#xff0c;引导Chat…

windows配置开机自启动软件或脚本

文章目录 windows配置开机自启动软件或脚本配置自启动目录开机运行的脚本调试开机自启动脚本配置守护进程(包装成自启动服务)使用任务计划程序FAQ 开机自动运行脚本示例 windows配置开机自启动软件或脚本 配置自启动目录 在Windows中添加开机自动运行的软件&#xff0c;可以按…

CF1870F - Lazy Numbers 一道Trie树思路应用的题目

C F 1870 F − L a z y N u m b e r s \mathrm{CF1870F - Lazy\ Numbers} CF1870F−Lazy Numbers D e s c r i p t i o n Description Description 对于给定的 n n n 和 k k k&#xff0c;求解出 1 ∼ n 1\sim n 1∼n 的每一个数在 k k k 进制下字典序排列的顺序&#xff…

Matlab图像处理——图像边缘检测方法(算子)

1.edge函数语法 BW edge(I) BW edge(I,method) BW edge(I,method,threshold) BW edge(I,method,threshold,direction) BW edge(___,"nothinning") BW edge(I,method,threshold,sigma) BW edge(I,method,threshold,h) BW edge(I) 返回二值图像 BW&#xff0…

分享89个时间日期JS特效,总有一款适合您

分享89个时间日期JS特效&#xff0c;总有一款适合您 89个时间日期JS特效下载链接&#xff1a;https://pan.baidu.com/s/127_keimOfy_AKrCNT4TQNA?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;…

Java安全 CC链1分析(Lazymap类)

Java安全 CC链1分析 前言CC链分析CC链1核心LazyMap类AnnotationInvocationHandler类 完整exp&#xff1a; 前言 在看这篇文章前&#xff0c;可以看下我的上一篇文章&#xff0c;了解下cc链1的核心与环境配置 Java安全 CC链1分析 前面我们已经讲过了CC链1的核心ChainedTransf…

【开源】SpringBoot框架开发木马文件检测系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 木马分类模块2.3 木马软件模块2.4 安全资讯模块2.5 脆弱点模块2.6 软件检测模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 木马分类表3.2.2 木马软件表3.2.3 资讯表3.2.4 脆弱点表3.2.5 软件检测表…