WSL下如何使用Ubuntu本地部署Vits2.3-Extra-v2:中文特化修复版(新手从0开始部署教程)

news2024/11/25 4:54:24

环境:

硬:

台式电脑

1.cpu:I5 11代以上

2.内存16G以上

3.硬盘固态500G以上

4.显卡N卡8G显存以上
20系2070以上

本案例英伟达4070 12G

5.网络可连github

软:

Win10 专业版 19045以上

WSL2 -Ubuntu22.04

1.bert-Vits2.3

Extra-v2:中文特化修复版
Extra-Fix分支

底模:Bert-VITS2_中文特化修复底模_0.0.1

2.python 3.11以上

3.git

4.cuda11.8

5.pytorch2.1

问题描述:

WSL下如何使用Ubuntu本地部署Vits2.3-Extra-v2:中文特化修复版

在这里插入图片描述

解决方案:

Bert-VITS2简介

bert-vits2可预测感情文本转语音技术的工作原理是,首先对大量的文本数据进行情感分析,以了解不同情感表达的语法和词汇使用情况。然后,利用这些信息,人工智能模型可以预测给定文本的情感倾向,并调整语音输出的音调和语速等参数,以匹配这种情感倾向。
流程包括文本预处理、声学模型处理训练和后处理三个步骤。首先,文本预处理会对标注的文本分析和处理,例如分词、词性标注和语法分析等。然后,声学模型训练会将文本转化为声学特征,这个过程通常需要大量的语音数据来训练。最后,后处理会对生成的语音波形进行优化和调整,以使其更符合直播带货的需求

Bert-VITS2部署

一、部署底层环境

Win10 安装WSL

WSL,全称Windows Subsystem for Linux,是Windows操作系统中的一个功能,它允许在Windows上运行Linux子系统。通过WSL,用户可以在Windows环境下使用Linux的命令行工具、脚本和应用程序,而无需进行双系统切换或虚拟机配置。WSL提供了与Linux内核的兼容性,使得在Windows上进行开发和运行Linux应用变得更加方便。用户可以在Microsoft Store中下载WSL,安装后即可使用。

1.启用 WSL 相关功能:

打开cmd终端(管理员权限)

运行以下命令以启用虚拟机平台功能:

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

在这里插入图片描述

重新启动计算机

2.安装 WSL 2 Linux 内核更新包:
下载适用于你的系统的 WSL 2 Linux 内核更新包:

x64 系统:https://aka.ms/wsl2kernel
在这里插入图片描述

ARM64 系统:https://aka.ms/wsl2kernelarm64
安装下载的。

3.设置 WSL 2 为默认版本:
打开 cmd终端,运行以下命令以将 WSL 2 设置为默认版本:
shell wsl --set-default-version 2

4.安装 Ubuntu 22.04 分发版:
打开 Microsoft Store 应用商店
在搜索栏中搜索 “Ubuntu 22.04”
选择 “Ubuntu 20.04 LTS” 并点击 “获取”
安装完成后,点击 “启动”

在这里插入图片描述

5.配置 Ubuntu 22.04:
在 Ubuntu 20.04 的安装界面中,为新的 Linux 用户设置用户名和密码

在这里插入图片描述

安装显卡驱动

1.Win10安装cuda-wsl驱动

https://developer.nvidia.com/cuda/wsl

确定要安装的版本

从物理设备开始一直到上层应用,CUDA有一条复杂的软件版本依赖链。我们通常从自己电脑的物理GPU型号开始,确定每个环节的软件版本:
GPU物理设备的型号	——决定——>	GPU驱动的版本号	对应关系
GPU驱动的版本号	——决定——>	CUDA的版本号	对应关系
CUDA的版本号	——决定——>	cuDNN的版本号	对应关系
CUDA的版本号,同上	——决定——>	PyTorch等深度学习框架的版本号	对应关系
nvcc -V

在这里插入图片描述

cmd下以root权限进入WSL

wsl -u root 

查看显卡配置

 nvidia-smi

在这里插入图片描述

2.ubuntu安装cuda(如果WIN10下驱动正常,这步不需要再安装)

https://developer.nvidia.com/cuda-toolkit-archive
安装cuda11.8
在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run

选install

在这里插入图片描述

在这里插入图片描述
3.安装cuda-toolkit

apt install nvidia-cuda-toolkit

完成查看

nvcc -V

在这里插入图片描述

4.安装cuDNN

https://developer.nvidia.com/rdp/cudnn-archive#a-collapse833-115
在这里插入图片描述

拉取Vits2.3项目

拉取Extra-Fix分支

1.在e盘新建work文件夹

2.进入文件夹cd /mnt/e/work

git clone https://github.com/fishaudio/Bert-VITS2.git

还可以下载下来解压到work目录

在这里插入图片描述
3.安装python3.11

编辑软件源配置文件:

sudo nano /etc/apt/sources.list

在打开的文件中,将现有的软件源地址替换为清华大学的镜像源地址。

将清华源地址粘贴到文件中

deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-security main restricted universe multiverse

保存更改,并关闭编辑器(按下 Ctrl + X,然后按下 Y 确认保存,最后按下 Enter 关闭编辑器)。

更新软件包列表:
sudo apt update

安装python3.11

sudo apt install python3.11
apt install python3-pip

4.安装pytorch

PyTorch是一个开源的机器学习框架,用于构建深度学习模型。它提供了丰富的工具和库,使得开发者可以轻松地创建和训练各种类型的神经网络模型
pip3 install numpy --pre torch torchvision torchaudio --force-reinstall --index-url https://download.pytorch.org/whl/nightly/cu118

警告:以“root”用户身份运行pip可能会导致权限中断以及与系统包管理器发生冲突。建议改用虚拟环境:https://pip.pypa.io/warnings/venv

5.设置虚拟环境

安装venv包,请先安装:

sudo apt install python3-venv

创建新的虚拟环境:

python3 -m venv vitsenv

将vitsenv替换为您想要为虚拟环境的名称

激活虚拟环境:

source vitsenv/bin/activate

在这里插入图片描述

现在您的提示符应该已更改,表示您正在虚拟环境中工作。现在,您可以使用pip而无需使用sudo命令

完成工作后,请记得停用虚拟环境:

deactivate

pip3 install numpy --pre torch torchvision torchaudio --force-reinstall --index-url https://download.pytorch.org/whl/nightly/cu118

在这里插入图片描述
查看是否成功

python -c "import numpy; print(numpy.__version__)"
python -c "import torch; print(torch.__version__)"

在这里插入图片描述

6.安装需求依赖库

安装项目里的需求依赖库:

 pip install -r requirements.txt

requirements.txt 里面内容

librosa==0.9.2:用于音频和音乐信号处理的Python库。
matplotlib:用于创建可视化图表和绘图的Python库。
numpy:用于进行数值计算和数组操作的Python库。
numba:用于提供即时编译(JIT)功能,加速Python代码的执行。
phonemizer:用于将文本转换为音素序列的Python库。
scipy:用于科学计算和数值分析的Python库。
tensorboard:用于可视化和监控深度学习模型训练过程的工具。
Unidecode:用于将Unicode文本转换为ASCII文本的Python库。
amfm_decompy:用于分解调频调幅信号的Python库。
jieba_fast:用于中文分词的快速版本。
jieba:用于中文分词的Python库。
transformers:用于自然语言处理(NLP)任务的预训练模型和工具的库。
pypinyin:用于将汉字转换为拼音的Python库。
cn2an:用于将中文数字转换为阿拉伯数字的Python库。
gradio==3.50.2:用于构建交互式界面的Python库。
av:用于音频和视频处理的Python库。
mecab-python3:Python的日本语形态分析器MeCab的绑定。
loguru:用于更简单和更美观的日志记录的Python库。
unidic-lite:日本语形态分析字典Unidic的轻量级版本。
cmudict:包含美国英语发音的字典。
fugashi:Python的日本语形态分析器。
num2words:将数字转换为对应的文字表达的Python库。
PyYAML:用于解析和生成YAML文件的Python库。
requests:用于发送HTTP请求的Python库。
pyopenjtalk-prebuilt:日本语文本到语音合成的库。
jaconv:用于日本语文本转换的Python库。
psutil:用于获取系统信息和进程管理的Python库。
GPUtil:用于获取GPU(显卡)信息的Python库。
vector_quantize_pytorch:用于向量量化的PyTorch实现。
g2p_en:用于将英文单词转换为音素序列的Python库。
sentencepiece:用于分词和文本处理的Python库。
pykakasi:用于日语文本转化为罗马字拼音的Python库。
langid:用于自然语言文本语言检测的Python库。
onnxruntime-gpu:用于在GPU上运行ONNX模型的库。
opencc==1.1.7:用于简繁体中文转换的库。
WeTextProcessing>=0.1.10:用于中文文本处理的库

在这里插入图片描述
安装需要一段时间。。。

可以把源设置为清华的

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

苗贺明7.安装转写包

pip install funasr modelscope -i https://pypi.douban.com/simple/

二、模型下载

1.首先是bert模型下载

bert模型链接

https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model

2.按各自需要下载英日中的bert模型,将下载得到的pytorch_model.bin文件放入对应文件夹

deberta-v2-large-japanese-char-wwm(必下)

点进去下载
在这里插入图片描述

chinese-roberta-wwm-ext-large (必下)

在这里插入图片描述点进去下载

在这里插入图片描述

3.放进chinese-roberta-wwm-ext-large 下
在这里插入图片描述

将clap模型放入

Bert-VITS2\emotional\clap-htsat-fused
在这里插入图片描述

4.然后我们需要下载训练所需要的预训练模型

先输入

pip install openi

在这里插入图片描述

5.安装启智ai

然后进入以下链接: https://openi.pcl.ac.cn/user/settings/applications

先注册该平台账号,然后生成token(令牌)
在这里插入图片描述在这里插入图片描述保存该令牌,然后回到vits界面,输入openi login

右键粘贴你刚才保存的token
在这里插入图片描述在这里插入图片描述
6.在线下载



openi model download -r Stardust_minus/Bert-VITS2 -m  Bert-VITS2_中文特化修复底模 -p ./pretrained_model    

还可以手工一个一个下载

在这里插入图片描述放置在,你设定的数据集名称文件夹 模型文件夹里,和下面自定义模型文件夹路径一样

在这里插入图片描述

三、生成和修改配置文件

1.首次使用该项目先输入 python resample.py,生成配置文件

在这里插入图片描述

2.然后修改config.yml,根据自己实际情况进行修改

如果你不知道应该怎么修改,可以给我的参考一下

dataset_raw是你放置未处理的音频的文件夹,dataset处理后的数据集文件夹

这两个文件夹都需要手动创建

mirror将它的值从改为"openi"

在这里插入图片描述

3.将标注文本文件全部同意命名为clean_barbara.list,标注文本位于filelist文件夹内(后期用别的软件标注,标注文件在这替换)

在这里插入图片描述

4.自动保存的模型数量,根据需要和自己的硬盘空间进行修改
在这里插入图片描述

5.server内的模型留空[],进入Hiyori UI后再加载模型

在这里插入图片描述在这里插入图片描述

6.webui块的模型路径根据你自己的模型位置进行修改

ctrl+将所有的config.json路径都替换为configs/config.json

在这里插入图片描述
全部配置文件内容如下

# 全局配置
# 对于希望在同一时间使用多个配置文件的情况,例如两个GPU同时跑两个训练集:通过环境变量指定配置文件,不指定则默认为./config.yml

# 拟提供通用路径配置,统一存放数据,避免数据放得很乱
# 每个数据集与其对应的模型存放至统一路径下,后续所有的路径配置均为相对于datasetPath的路径
# 不填或者填空则路径为相对于项目根目录的路径
dataset_path: ""

# 模型镜像源,默认huggingface,使用openi镜像源需指定openi_token
mirror: "openi"
openi_token: "824fc7f0a921968883b708ea1ad64fe015894b37"  # openi token

# resample 音频重采样配置
# 注意, “:” 后需要加空格
resample:
  # 目标重采样率
  sampling_rate: 44100
  # 音频文件输入路径,重采样会将该路径下所有.wav音频文件重采样
  # 请填入相对于datasetPath的相对路径
  in_dir: "dataset_raw/XFQLS" # 相对于根目录的路径为 /datasetPath/in_dir
  # 音频文件重采样后输出路径
  out_dir: "dataset/XFQLS"


# preprocess_text 数据集预处理相关配置
# 注意, “:” 后需要加空格
preprocess_text:
  # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
  transcription_path: "filelists/clean_barbara.list"
  # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
  cleaned_path: ""
  # 训练集路径
  train_path: "filelists/train.list"
  # 验证集路径
  val_path: "filelists/val.list"
  # 配置文件路径
  config_path: "configs/config.json"
  # 每个语言的验证集条数
  val_per_lang: 4
  # 验证集最大条数,多于的会被截断并放到训练集中
  max_val_total: 12
  # 是否进行数据清洗
  clean: true


# bert_gen 相关配置
# 注意, “:” 后需要加空格
bert_gen:
  # 训练数据集配置文件路径
  config_path: "configs/config.json"
  # 并行数
  num_processes: 4
  # 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
  # 该选项同时决定了get_bert_feature的默认设备
  device: "cuda"
  # 使用多卡推理
  use_multi_device: false

# emo_gen 相关配置
# 注意, “:” 后需要加空格
emo_gen:
  # 训练数据集配置文件路径
  config_path: "configs/config.json"
  # 并行数
  num_processes: 4
  # 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
  device: "cuda"
  # 使用多卡推理
  use_multi_device: false

# train 训练配置
# 注意, “:” 后需要加空格
train_ms:
  env:
    MASTER_ADDR: "localhost"
    MASTER_PORT: 10086
    WORLD_SIZE: 1
    LOCAL_RANK: 0
    RANK: 0
    # 可以填写任意名的环境变量
    # THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
  # 底模设置
  base:
    use_base_model: false
    repo_id: "Stardust_minus/Bert-VITS2"
    model_image: "Bert-VITS2_2.3底模" # openi网页的模型名
  # 训练模型存储目录:与旧版本的区别,原先数据集是存放在logs/model_name下的,现在改为统一存放在Data/你的数据集/models下
  model: "data/XFQLS/models"
  # 配置文件路径
  config_path: "configs/config.json"
  # 训练使用的worker,不建议超过CPU核心数
  num_workers: 5
  # 关闭此项可以节约接近70%的磁盘空间,但是可能导致实际训练速度变慢和更高的CPU使用率。
  spec_cache: False
  # 保存的检查点数量,多于此数目的权重会被删除来节省空间。
  keep_ckpts: 15


# webui webui配置
# 注意, “:” 后需要加空格
webui:
  # 推理设备
  device: "cuda"
  # 模型路径
  model: "models/G_8000.pth"
  # 配置文件路径
  config_path: "configs/config.json"
  # 端口号
  port: 7860
  # 是否公开部署,对外网开放
  share: false
  # 是否开启debug模式
  debug: false
  # 语种识别库,可选langid, fastlid
  language_identification_library: "langid"


# server-fastapi配置
# 注意, “:” 后需要加空格
# 注意,本配置下的所有配置均为相对于根目录的路径
server:
  # 端口号
  port: 5000
  # 模型默认使用设备:但是当前并没有实现这个配置。
  device: "cuda"
  # 需要加载的所有模型的配置,可以填多个模型,也可以不填模型,等网页成功后手动加载模型
  # 不加载模型的配置格式:删除默认给的两个模型配置,给models赋值 [ ],也就是空列表。参考模型2的speakers 即 models: [ ]
  # 注意,所有模型都必须正确配置model与config的路径,空路径会导致加载错误。
  # 也可以不填模型,等网页加载成功后手动填写models。
  models:
    - # 模型的路径
      model: ""
      # 模型configs/config.json的路径
      config: ""
      # 模型使用设备,若填写则会覆盖默认配置
      device: "cuda"
      # 模型默认使用的语言
      language: "ZH"
      # 模型人物默认参数
      # 不必填写所有人物,不填的使用默认值
      # 暂时不用填写,当前尚未实现按人区分配置
      speakers:
        - speaker: "科比"
          sdp_ratio: 0.2
          noise_scale: 0.6
          noise_scale_w: 0.8
          length_scale: 1
        - speaker: "五条悟"
          sdp_ratio: 0.3
          noise_scale: 0.7
          noise_scale_w: 0.8
          length_scale: 0.5
        - speaker: "安倍晋三"
          sdp_ratio: 0.2
          noise_scale: 0.6
          noise_scale_w: 0.8
          length_scale: 1.2
    - # 模型的路径
      model: ""
      # 模型configs/config.json的路径
      config: ""
      # 模型使用设备,若填写则会覆盖默认配置
      device: "cpu"
      # 模型默认使用的语言
      language: "JP"
      # 模型人物默认参数
      # 不必填写所有人物,不填的使用默认值
      speakers: [ ] # 也可以不填

# 百度翻译开放平台 api配置
# api接入文档 https://api.fanyi.baidu.com/doc/21
# 请不要在github等网站公开分享你的app id 与 key
translate:
  # 你的APPID
  "app_key": ""
  # 你的密钥
  "secret_key": ""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1445305.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Packet Tracer - Configure IOS Intrusion Prevention System (IPS) Using the CLI

Packet Tracer - 使用CLI配置IOS入侵防御系统(IPS) 地址表 目标 启用IOS入侵防御系统(IPS)。 配置日志记录功能。 修改IPS签名规则。 验证IPS配置。 背景/场景 您的任务是在R1上启用IPS,扫描进入192.168.1.0网络…

django报错:Cannot use ImageField because Pillow is not installed

1、问题概述 ERRORS: accounts.User.avatar: (fields.E210) Cannot use ImageField because Pillow is not installed. HINT: Get Pillow at https://pypi.org/project/Pillow/ or run command "python -m pip install Pillow". System check identified 1 …

98.网游逆向分析与插件开发-网络通信封包解析-定位明文发送数据的关键函数

内容参考于:易道云信息技术研究院VIP课 上一个内容:项目需求与需求拆解 通过上一个内容有了对网络通信架构有一个简单认识了解,对于我们重要的点是 组织数据 到 加密数据之间的过程,这个过程的数据我们是可以看懂的,…

Duilib List 控件学习

这是自带的一个示例; 一开始运行的时候List中是空的,点击Search按钮以后就填充列表框; 先看一下列表框列头是在xml文件中形成的; <List name="domainlist" bkcolor="#FFFFFFFF" ... menu="true"> <ListHeader height="24…

【MySQL进阶之路】好友推荐系统索引设计实战

欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术的推送&#xff01; 在我后台回复 「资料」 可领取编程高频电子书&#xff01; 在我后台回复「面试」可领取硬核面试笔记&#xff01; 文章导读地址…

ADSelfService Plus发布离线MFA功能,强化远程工作安全性

ManageEngine ADSelfService Plus推出离线多因素身份验证&#xff0c;提升远程工作安全性确保通过先进的验证方法对企业数据进行授权访问&#xff0c;无论时间、地点或连接问题如何允许远程用户安全进行身份验证&#xff0c;即使未连接到认证服务器或互联网使用高度安全的基于T…

###C语言程序设计-----C语言学习(12)#进制间转换,十进制,二进制,八进制,十六进制

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 计算机处理的所有信息都以二进制形式表示&#xff0c;即数据的存储和计算都采…

协议-TCP协议-基础概念04-可能发生丢包的位置-linux配置项梳理(TCP连接的建立和断开、收发包过程)

可能发生丢包的位置-linux配置项梳理&#xff08;TCP连接的建立和断开、收发包过程&#xff09;-SYN Flood攻击和防御原理 参考来源&#xff1a; 极客时间-Linux性能优化实战 极客时间-Linux内核技术实战课 到底是哪里发生了丢包呢&#xff1f; Linux 的网络收发流程 从图中…

【java】12:封装

面向对象编程三大特征 1.基本介绍 面向对象编程有三大特征&#xff1a;封装、继承和多态。 2.封装介绍 封装(encapsulation)就是把抽象出的数据[属性]和对数据的操作[方法]封装在一起&#xff0c;数据被保护在内部&#xff0c;程序的其它部分只有通过被授权的操作[方法]&am…

3秒实现无痛基于Stable Diffusion WebUI安装ComfyUI!无需重复安装环境!无需重复下载模型!安装教程

标题略有夸张的表达了接下来这一套确实很简单&#xff0c;相较于直接下载或者通过秋叶包更新而言。大大节省磁盘空间&#xff0c;和下载时间。 这篇教程不需要你有&#xff1a; 代码基础。都是复制粘贴就完事。魔法。 这篇教程默认你已经有&#xff1a; 1. 本地能够正常使用…

python+flask+django农产品供销展销电子商务系统lkw43

供销社农产品展销系统的设计与实现&#xff0c;最主要的是满足使用者的使用需求&#xff0c;并且可以向使用者提供一些与系统配套的服务。本篇论文主要从实际出发&#xff0c;采用以对象为设计重点的设计方法&#xff0c;因此在进行系统总体的需求分时借助用例图可以更好的阐述…

Ainx-V0.2-简单的连接封装与业务绑定

&#x1f4d5;作者简介&#xff1a; 过去日记&#xff0c;致力于Java、GoLang,Rust等多种编程语言&#xff0c;热爱技术&#xff0c;喜欢游戏的博主。 &#x1f4d7;本文收录于Ainx系列&#xff0c;大家有兴趣的可以看一看 &#x1f4d8;相关专栏Rust初阶教程、go语言基础系列…

MySQL(基础)

第01章_数据库概述 1. 为什么要使用数据库 持久化(persistence)&#xff1a;把数据保存到可掉电式存储设备中以供之后使用。大多数情况下&#xff0c;特别是企业级应用&#xff0c;数据持久化意味着将内存中的数据保存到硬盘上加以”固化”&#xff0c;而持久化的实现过程大多…

汽车出租管理系统

文章目录 汽车出租管理系统一、系统演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目源码&#xff08;9.9&#xffe5;带走&#xff09; 汽车出租管理系统 一、系统演示 汽车租赁系统 二、项目介绍 语言&#xff1a;java 框架&#xff1a;SpringBoot、…

C#使用重载方法实现不同类型数据的计算

目录 一、涉及到的相关知识 1.重载的方法 2.Convert.ToInt32(String)方法 3.判断字符串是否带有小数点 二、实例 1.示例 2.生成成果 一、涉及到的相关知识 1.重载的方法 重载方法就是方法名称相同&#xff0c;但是每个方法中参数的数据类型、个数或顺序不同的方法。如果…

腾讯云4核8G服务器可以用来干嘛?怎么收费?

腾讯云4核8G服务器适合做什么&#xff1f;搭建网站博客、企业官网、小程序、小游戏后端服务器、电商应用、云盘和图床等均可以&#xff0c;腾讯云4核8G服务器可以选择轻量应用服务器4核8G12M或云服务器CVM&#xff0c;轻量服务器和标准型CVM服务器性能是差不多的&#xff0c;轻…

云安全的基本概念(基本目标与指导方针)

目录 一、云安全概念概述 1.1 概述 二、云安全的基本目标 2.1 安全策略开发模型 2.1.1 信息安全三元组 2.1.1.1 保密性(Confidentiality) 2.1.1.2 完整性(Integrity) 2.1.1.3 可用性(Availability) 2.1.2 信息安全三元组的局限性 2.2 其他信息安全属性 2.2.1 真实性 …

CTFshow-WEB入门-信息搜集

web1&#xff08;查看注释1&#xff09; wp 右键查看源代码即可找到flag web2&#xff08;查看注释2&#xff09; wp 【CtrlU】快捷键查看源代码即可找到flag web3&#xff08;抓包与重发包&#xff09; wp 抓包后重新发包&#xff0c;在响应包中找到flag web4&#xff08;robo…

服务器解析漏洞及任意文件下载

1.服务器文件解析漏洞 文件解析漏洞,是指Web容器&#xff08;Apache、nginx、iis等&#xff09;在解析文件时出现了漏洞,以其他格式执行出脚本格式的效果。从而,黑客可以利用该漏洞实现非法文件的解析。 &#xff08;1) Apache linux系统中的apache的php配置文件在/etc/apac…

PyTorch深度学习实战(26)——多对象实例分割

PyTorch深度学习实战&#xff08;26&#xff09;——多对象实例分割 0. 前言1. 获取并准备数据2. 使用 Detectron2 训练实例分割模型3. 对新图像进行推断小结系列链接 0. 前言 我们已经学习了多种图像分割算法&#xff0c;在本节中&#xff0c;我们将学习如何使用 Detectron2 …