【Linux】学习-进程信号

news2024/11/16 20:59:52

进程信号

信号入门

生活角度的信号

  • 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时,你该怎么处理快递。也就是你能“识别快递”,也就是你意识里是知道如果这时候快递员送来了你的包裹,你知道该如何处理这些包裹
  • 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不是一定要立即执行,可以理解成“在合适的时候去取”。你可以暂时将包裹搁置,等到有空的时候再处理。
  • 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知道有一个快递已经来了。本质上是你“记住了有一个快递要去取”
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:1. 执行默认动作(幸福的打开快递,使用商品)2. 执行自定义动作(快递是零食,你要送给你你的女朋友)3. 忽略快递(快递拿上来之后,扔掉床头,继续开一把游戏)
  • 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话

技术应用角度的信号

什么是Linux信号?

  • 信号是进程之间事件异步通知的一种方式,属于软中断

  • 信号本质是一种通知机制,用户or操作系统通过发送一定的信号,通知进程,某些事件已经发生,进程可以根据信号的种类来进行相关处理、

结合生活信号,对信号的一些小结论

  • 进程要处理信号,必须具备信号的“识别”能力,和此能力是程序员给进程植入的,可以理解成出生就自带的
  • 信号种类繁多,因此进程收到信号后,有可能是立即执行的,也有可能是后续处理的
  • 信号能够被进程所保存,因此也就具备后续处理的能力
  • 一般而言,信号的产生相对于进程而言是异步的,也就是说,信号发送的时候,进程是正在干自己的事情的,随时都有可能收到信号,具备识别能力但不代表提前得知

先简单理解一下信号被进程保存

  • 进程内部有相关的数据结构位图,信号每次被发送给进程时,此时信号处于未决状态,那么用来保存信号的字段表中信号编号对应的位置就会由0变1

    信号处理的三种方式

  • 默认处理

  • 忽略

  • 自定义捕捉

产生信号

通过终端按键产生信号

  • 我们平常在写代码时,其实经常都有在跟信号接触,看以下代码:

    #include <stdio.h>
    #include <unistd.h>
    int main()
    {
         
        while(1){
         
        printf("I am a process, I am waiting signal!\n");
        sleep(1);
     }
    }
    

    image-20231008160048771

由于没有退出条件,因此进程一直处于死循环,此时我们在键盘里键入:Ctrl+c 能够将进程终止,其实按下组合键后本质就是向当前在前台运行的进程发送了终止信号,进程也立马对此信号做出了反应,终止掉了进程。这就是产生信号的其中一种方式

常见信号

  • 信号一共有61个信号,32,33,0号信号是不存在的,而1-31的信号称为普通信号,32-64为实时信号,我们只学习普通信号:

    image-20231008160757094

  • 关于信号的详细信息我们可以用man手册查看:man 7 signal

    image-20231008160703067

  • 每个信号的编号都是被宏定义好的:

    /* Signals.  */
    #define	SIGHUP		1	/* Hangup (POSIX).  */
    #define	SIGINT		2	/* Interrupt (ANSI).  */
    #define	SIGQUIT		3	/* Quit (POSIX).  */
    #define	SIGILL		4	/* Illegal instruction (ANSI).  */
    #define	SIGTRAP		5	/* Trace trap (POSIX).  */
    #define	SIGABRT		6	/* Abort (ANSI).  */
    #define	SIGIOT		6	/* IOT trap (4.2 BSD).  */
    #define	SIGBUS		7	/* BUS error (4.2 BSD).  */
    #define	SIGFPE		8	/* Floating-point exception (ANSI).  */
    #define	SIGKILL		9	/* Kill, unblockable (POSIX).  */
    #define	SIGUSR1		10	/* User-defined signal 1 (POSIX).  */
    #define	SIGSEGV		11	/* Segmentation violation (ANSI).  */
    #define	SIGUSR2		12	/* User-defined signal 2 (POSIX).  */
    #define	SIGPIPE		13	/* Broken pipe (POSIX).  */
    #define	SIGALRM		14	/* Alarm clock (POSIX).  */
    #define	SIGTERM		15	/* Termination (ANSI).  */
    #define	SIGSTKFLT	16	/* Stack fault.  */
    #define	SIGCLD		SIGCHLD	/* Same as SIGCHLD (System V).  */
    #define	SIGCHLD		17	/* Child status has changed (POSIX).  */
    #define	SIGCONT		18	/* Continue (POSIX).  */
    #define	SIGSTOP		19	/* Stop, unblockable (POSIX).  */
    #define	SIGTSTP		20	/* Keyboard stop (POSIX).  */
    #define	SIGTTIN		21	/* Background read from tty (POSIX).  */
    #define	SIGTTOU		22	/* Background write to tty (POSIX).  */
    #define	SIGURG		23	/* Urgent condition on socket (4.2 BSD).  */
    #define	SIGXCPU		24	/* CPU limit exceeded (4.2 BSD).  */
    #define	SIGXFSZ		25	/* File size limit exceeded (4.2 BSD).  */
    #define	SIGVTALRM	26	/* Virtual alarm clock (4.2 BSD).  */
    #define	SIGPROF		27	/* Profiling alarm clock (4.2 BSD).  */
    #define	SIGWINCH	28	/* Window size change (4.3 BSD, Sun).  */
    #define	SIGPOLL		SIGIO	/* Pollable event occurred (System V).  */
    #define	SIGIO		29	/* I/O now possible (4.2 BSD).  */
    #define	SIGPWR		30	/* Power failure restart (System V).  */
    #define SIGSYS		31	/* Bad system call.  */
    #define SIGUNUSED	31
    
  • 其中,Ctrl+c 组合键对应的就是2号信号SIGINT,它所对应的Action行为是Term行为:Terminate终止动作

注意

  1. Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程。
  2. Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生的信号。
  3. 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步(Asynchronous)的。

如何理解组合键变信号?

  • 键盘的工作方式是通过中断方式进行的,因此操作系统能读取并解析组合键,解析完毕后会查找进程列表中在前台运行的进程,并把对于的信号写入进程!

初始信号捕捉

我们前面提到过,信号被写入进程后,进程对此信号的处理有三种方式,我们先来简单介绍一下自定义捕捉方式

介绍signal函数

  • image-20231008165135410

    功能:能够捕捉指定的信号编号为signum的信号,然后将此信号的处理方式使用我们自定义的方式handler

  • 其中:sighandler_t是一个函数指针,以一个的函数指针作为另一个函数的参数并在函数内使用函数指针调用对应指向的函数,此函数称为回调函数,自定义捕捉时,我们实现自定义函数,并将函数作为参数传给signal,通过回调的方式,来修改对应信号的捕捉方法。返回值是自定义捕捉前的函数的地址。

通过信号捕捉的方式,验证Ctrl+c组合键是SIGINT信号

  • #include <iostream>
    #include <unistd.h>
    #include <signal.h>
    using namespace std;
    void cathSig(int signum)
    {
        cout<<"i catch you! SIGINT!"<<endl;
    }
    int main()
    {
      signal(SIGINT,cathSig);
      while(1)
      {
        cout<<"my pid:"<<getpid()<<endl;
        sleep(1);
      }
    }
    

image-20231008171152188

我们可以观察到,按下Ctrl-c后进程并不会像之前一样退出,而是执行了我们自己的代码!得以验证以下两个结论:

  • Ctrl-c对应的信号为SIGINT信号
  • Ctrl-c对应的信号处理方式为终止进程,自定义捕捉方式后,原先的处理方法就被舍弃了

注意

  • signal函数一般写在最前面,原理类似于我们要先买票,才能对信号进行自定义捕捉,后面讲阻塞信号时会解释原理!

Core Dump

我们先来比较两个信号

  • image-20231008171758567

    这两个信号都是从键盘敲组合键来向进程发送信号,其中:

    • Ctrl-c 对应的是2号SIGINT
    • Ctrl-\ 对应的是3号信号SIGQUIT
  • 他们两个的作用都能够用来终止进程,但不同的是:

    2号对应的行为是Term:Terminate

    3号对应的行为是Core:Core Dump

  • 简单验证:image-20231008172753177

什么是Core Dump?

  • Core Dump,又叫核心转储,当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。
  • 默认是不允许产生core文件的(一般而言,云服务器-生产环境下,核心转储的功能是被关闭的!),因为core文件中可能包含用户密码等敏感信息,不安全。
  • 在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c1024

使用命令ulimit命令查看并修改相关资源配置

  • image-20231008173314127

显示0时,代表核心转储不被允许产生,我们需要自行开启:

image-20231008173420309

此时已显示core文件允许的最大内存为1024K,但仅仅在当前会话生效,退出会话后就失效了

  • ulimit命令改变了Shell进程的Resource Limit,test进程的PCB由Shell进程复制而来,所以也具 有和Shell进程相同的Resource Limit值,这样就可以产生Core Dump了。

验证Ctrl-\ 发送的SIGQUIT能够产生core文件的功能

  • 先写一个死循环程序:

    int main()
    {
         
    while(1)
    {
         
        printf("my pid:%d\n",getpid());
        sleep(1);
    }
    }
    

    运行并用Ctrl-c命令终止后发现并没有产生任何文件:

    image-20231009100614215

  • 再次运行并使用Ctrl-\ 命令终止:

    image-20231009101004912

    这次我们发现产生了core.27213文件,并且后缀就是以进程的pid来命名的,代表此文件就是此进程出现某种异常时,由os将此进程在内核中相关的核心数据转存到磁盘中

核心转储有什么用?

  • 主要是用来进行调试,有了核心转储的数据,调试时会方便很多

利用核心转储进行调试

  • 除了SIGQUIT信号的行为是core,还有其他很多命令也有core行为,下面我们使用SIGFPE信号来验证使用核心转储调试时是否会方便image-20231009103130248

    FPE:Floating point exception指的是浮点数错误,一般指除0错误

  • 首先编写程序,并且编译时,带上-g选项,生成debug文件

    int main()
    {
         
        while (1)
        {
         
            printf("my pid:%d\n", getpid());
            sleep(1);
            int a=100;
            a/=0;
            printf("run here...\n");
        }
    }
    

    image-20231009103412230

  • 重新运行程序,此时也随之生成了core dump文件

    image-20231009103454313

  • 启用gdb调试程序,输入core-file core.pid(core文件名)

    image-20231009103654527

此时我们能发现,在core dump文件的帮助下,能自动帮我们定位在哪一行代码收到了什么信号,比如这里,我们在29行除0错误处收到了8号信号,而8号信号就是对应的SIGFPE信号

core dump标记位

  • 其实我们在进程间控制时就已经和Core Dump有过一面之缘了,我们来看这张图:

在进程控制一篇提到过,子进程退出时,父进程可以通过进程等待的方式,收集子进程的退出信息,以防子进程变成僵尸进程,其中进程等待可以使用wait和waitpid系统调用image-20231009104433908

其中我们也提到过status参数是一个输出型参数,其中如果子进程是被信号所杀的话,此参数的低七位会被填入终止信号的编号,而第八位则是显示是否有生成core dump文件,我们也可以通过代码来验证一下:

用子进程验证core dump标记位

  • int main()
    {
         
    	pid_t id = fork();
        if (id == 0)
        {
         
            // child
            sleep(1);
            int a = 100;
            a /= 0;
            exit(0);
        }
        int status = 0;
        waitpid(id, &status, 0);
        cout 
        << "father:" << getpid()<<" " 
        << "child:" << id <<" "
        << "exit sig:" 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1443869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对话模型Demo解读(使用代码解读原理)

文章目录 前言一、数据加工二、模型搭建三、模型训练1、构建模型2、优化器与损失函数定义3、模型训练 四、模型推理五、所有Demo源码 前言 对话模型是一种人工智能技术&#xff0c;旨在使计算机能够像人类一样进行对话和交流。这种模型通常基于深度学习和自然语言处理技术&…

MongoDB从入门到实战之.NET Core使用MongoDB开发ToDoList系统(1)-后端项目框架搭建

前言&#xff1a; 前面的四个章节我们主要讲解了MongoDB的相关基础知识&#xff0c;接下来我们就开始进入使用.NET7操作MongoDB开发一个ToDoList系统实战教程。本章节主要介绍的是如何快熟搭建一个简单明了的后端项目框架。 MongoDB从入门到实战的相关教程 MongoDB从入门到实战…

从信息隐藏到功能隐藏

本文主要记录复旦大学张新鹏教授于2022年12月在第三届CSIG中国媒体取证与安全大会上的汇报

蓝桥杯Web应用开发-CSS3 新特性【练习一:属性有效性验证】

练习一&#xff1a;属性有效性验证 页面上有一个邮箱输入框&#xff0c;当你的输入满足邮箱格式时&#xff0c;输入框的背景颜色为绿色&#xff1b;当你的输入不满足要求&#xff0c;背景颜色为红色。 新建一个 index2.html 文件&#xff0c;在其中写入以下内容。 <!DOCTYP…

Stata实证命令代码汇总

Stata代码命令汇总 数据内容&#xff1a;包括数据导入和管理、数据的处理、描述性统计、相关性分析、实证模型、内生性解决、检验分析、结果导出 具体如下&#xff1a; 一、数据导入和管理&#xff1a;数据导入、数据导出 二、数据的处理&#xff1a;生成新变量、格式转换、…

计算机二级C语言备考学习记录

一、C语言程序的结构 1.程序的构成&#xff0c;main函数和其他函数。 程序是由main函数和其他函数构成main作为主函数&#xff0c;一个C程序里只有一个main函数其他函数可以分为系统函数和用户函数&#xff0c;系统函数为编译系统提供&#xff0c;用户函数由用户自行编写 2.…

北斗卫星在物联网时代的应用探索

北斗卫星在物联网时代的应用探索 在当今数字化时代&#xff0c;物联网的应用已经深入到人们的生活中的方方面面&#xff0c;让我们的生活更加智能便捷。而北斗卫星系统作为我国自主研发的卫星导航系统&#xff0c;正为物联网的发展提供了强有力的支撑和保障。本文将全面介绍北…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思&#xff1a;实时更新的那种 还有就是你在股票这个网站上&#xff0c;翻页。他的地址是不变的 是动态的加载&#xff0c;真正我不太清楚&#xff0c;只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页&#xff0c;是网址是有规律的。 …

【Linux】信号概念与信号产生

信号概念与信号产生 一、初识信号1. 信号概念2. 前台进程和后台进程3. 认识信号4. 技术应用角度的信号 二、信号的产生1. 键盘组合键2. kill 命令3. 系统调用4. 异常&#xff08;1&#xff09;观察现象&#xff08;2&#xff09;理解本质 5. 软件条件闹钟 一、初识信号 1. 信号…

【网络】:序列化和反序列化

序列化和反序列化 一.json库 二.简单使用json库 前面已经讲过TCP和UDP&#xff0c;也写过代码能够进行双方的通信了&#xff0c;那么有没有可能这种通信是不安全的呢&#xff1f;如果直接通信&#xff0c;可能会被底层捕捉&#xff1b;可能由于网络问题&#xff0c;一方只接收到…

k8s-资源限制与监控 15

资源限制 上传实验所需镜像 Kubernetes采用request和limit两种限制类型来对资源进行分配。 request(资源需求)&#xff1a;即运行Pod的节点必须满足运行Pod的最基本需求才能 运行Pod。 limit(资源限额)&#xff1a;即运行Pod期间&#xff0c;可能内存使用量会增加&#xff0…

区间dp 笔记

区间dp一般是先枚举区间长度&#xff0c;再枚举左端点&#xff0c;再枚举分界点&#xff0c;时间复杂度为 环形石子合并 将 n 堆石子绕圆形操场排放&#xff0c;现要将石子有序地合并成一堆。 规定每次只能选相邻的两堆合并成新的一堆&#xff0c;并将新的一堆的石子数记做该…

分布式搜索引擎 elasticsearch

分布式搜索引擎 elasticsearch 第一部分 1.初识elasticsearch 1.1.了解ES 1.1.1.elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 例如&#xff1a; 在GitHub搜索…

159基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类

基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类&#xff0c;聚类结果效果好&#xff0c;DBSCAN不要求我们指定集群的数量&#xff0c;避免了异常值&#xff0c;并且在任意形状和大小的集群中工作得非常好。它没有质心&#xff0c;聚类簇是通过将相邻的点连接…

[论文总结] 深度学习在农业领域应用论文笔记12

文章目录 1. 3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset (CVPR, 2020)摘要背景相关研究所提出的数据集方法和结果个人总结 2. Automated flower classification over a large number of classes (Computer Vision, Graphics & Image Processing, 2008)摘要背景分割…

猜猜谁是凶手?

目录 一、题目二、思路三、完整代码 一、题目 日本某地发生了一件谋杀案&#xff0c;警察通过排查确定杀人凶手必为4个嫌疑犯的一个。 以下为4个嫌疑犯的供词: A说&#xff1a;不是我。 B说&#xff1a;是C。 C说&#xff1a;是D。 D说&#xff1a;C在胡说 已知3个人说了…

hexo 博客搭建以及踩雷总结

搭建时的坑 文章置顶 安装一下这个依赖 npm install hexo-generator-topindex --save然后再文章的上面设置 top: number&#xff0c;数字越大&#xff0c;权重越大&#xff0c;也就是越靠顶部 hexo 每次推送 nginx 都访问不到 宝塔自带的 nginx 的 config 里默认的角色是 …

RabbitMQ高级篇

消息队列在使用过程中&#xff0c;面临着很多实际问题需要思考&#xff1a; 一、消息可靠性 消息从发送&#xff0c;到消费者接收&#xff0c;会经历多个过程&#xff1a; 其中的每一步都可能导致消息丢失&#xff0c;常见的丢失原因包括&#xff1a; 发送时丢失&#xff1a;…

【sentinel流量卫兵配置持久化到Nacos】

sentinel流量卫兵配置持久化到Nacos 概述&#xff1a; 一、添加配置二、配置说明限流规则配置&#xff1a;降级规则配置&#xff1a;热点规则配置&#xff1a;授权规则配置&#xff1a;系统规则配置&#xff1a; 三、服务整合 概述&#xff1a; 控制台配置的参数&#xff0c;默…

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

为什么要示例演绎&#xff1f; 既然有了官方指南&#xff0c;咱们在官方指南上看看就可以了&#xff0c;为什么还要写示例演绎的文章呢&#xff1f; 其实对于初步了解TensorFlow的小伙伴们而言&#xff0c;示例演绎才是最重要的。 官方文档已经假定了您已经具备了相当合适的…