多模态知识图谱:感知与认知的交汇

news2025/1/11 19:53:16

目录

  • 前言
  • 1 多模态知识图谱的概念
    • 1.1 感知系统与认知系统的连接
    • 1.2 信息形式的整合与融合
    • 1.3 全面、多维度的认知基础
  • 2 多模态的作用
    • 2.1 模态的知识互补
    • 2.2 模态实体消歧
    • 2.3 模态语义搜索
    • 2.4 知识图谱补全
    • 2.5 多模态任务增强
  • 3 多模态知识图谱发展历史
    • 3.1 初期模态数据整合
    • 3.2 知识图谱与深度学习融合
    • 3.3 图谱嵌入与表示学习
    • 3.4 模态关系预测与推理
    • 3.5 知识图谱增强多模态任务
  • 4 多模态知识图谱示例
    • 4.1 IMGpedia
    • 4.1 mmkg
    • 4.1 ImageGraph
    • 4.1 Richpedia
  • 5 多模态知识图谱研究方向
    • 5.1 多模态关系预测与推理
    • 5.2 多模态知识问答
    • 5.3 场景图与知识图谱融合
    • 5.4 多模态推荐计算
    • 5.5 多模态语义搜索
  • 结语

前言

在当今信息时代,多模态数据的快速增长推动了人工智能领域的发展。多模态知识图谱作为感知系统与认知系统之间的桥梁,通过融合语言、视觉、听觉等多种信息形式,为人工智能系统提供了更为丰富、深入的理解。本文将深入探讨多模态知识图谱的发展历史、作用以及相关研究领域。

1 多模态知识图谱的概念

多模态知识图谱是一种创新性的知识表示形式,通过整合自然语言、视觉信息、听觉、触觉、嗅觉、味觉、生理信号等多元信息形式,实现对世界的全方位感知与理解。其核心目标在于构建一个能够更全面、更维度丰富地表达人工智能系统认知的框架。
在这里插入图片描述

1.1 感知系统与认知系统的连接

多模态知识图谱在人工智能体系中扮演着重要的角色,作为感知系统与认知系统之间的中介。感知系统通过各种传感器获取多模态数据,而认知系统则利用这些数据进行深度学习和推理。多模态知识图谱的存在,有效地连接了这两个系统,为智能系统提供了更全面、更高层次的认知基础。

1.2 信息形式的整合与融合

多模态知识图谱不仅仅关注于多模态数据的收集,更强调对不同信息形式的整合与融合。通过将自然语言、视觉、听觉等信息有机地结合,它创造性地实现了不同感知模态之间的相互补充,使得人工智能系统能够更为综合地理解世界。

1.3 全面、多维度的认知基础

其独特之处在于提供了全面、多维度的认知基础。传统的知识图谱主要基于文本信息,而多模态知识图谱通过整合多种感知数据,为智能系统带来了更为细致入微的理解能力。这种多维度的认知基础使得人工智能系统能够更贴近人类的感知和理解方式。

在这个信息爆炸的时代,多模态知识图谱的兴起不仅是对人工智能技术的创新,更是对认知科学的一次深刻思考,为未来智能系统的发展提供了新的可能性。

2 多模态的作用

在这里插入图片描述

2.1 模态的知识互补

多模态数据中不同信息形式相互补充,为人工智能系统提供更全面的认知基础。语言、图像、音频等模态之间的关联性增强了对世界的整体理解。

2.2 模态实体消歧

处理来自不同模态的信息,帮助系统消除实体歧义。通过整合视觉、听觉等数据,多模态知识图谱提高了对实体的准确识别,增强了系统对世界的感知能力。

2.3 模态语义搜索

支持多模态数据的语义搜索,使系统能够更灵活地理解用户查询。通过整合多种感知模态,多模态知识图谱使得信息检索更为智能、精准。

2.4 知识图谱补全

利用多模态数据,多模态知识图谱能够填补知识图谱的空白,提升图谱的完整性和准确性。图像、文本等信息的相互补充使得知识图谱更贴近真实世界。

2.5 多模态任务增强

多模态知识图谱为各种任务提供了强大的支持,通过整合知识图谱,多模态任务得以更高效、更智能地执行。这种增强不仅提升了任务性能,还提高了系统的整体效率。

多模态知识图谱的作用不仅仅是对单一模态的简单叠加,而是在不同模态之间建立了更为复杂的关系,为人工智能系统提供了更灵活、更强大的认知能力。这种整合多模态数据的方法在推动人工智能技术的发展方面具有深远的意义。

3 多模态知识图谱发展历史

3.1 初期模态数据整合

多模态知识图谱的发展始于对不同模态数据的简单整合。在早期,研究者主要关注如何将图像、文本、音频等不同形式的数据整合到一个统一的框架中。这一阶段注重数据的收集和表示,为后续深入研究奠定了基础。

3.2 知识图谱与深度学习融合

随着深度学习技术的崛起,多模态知识图谱进入了融合深度学习的新阶段。深度学习模型的出现使得对多模态数据的处理更加精确和高效。研究者开始探索如何结合深度学习方法,以提高多模态知识图谱的表示能力和推理效果。

3.3 图谱嵌入与表示学习

在知识图谱的基础上,研究者逐渐引入图谱嵌入和表示学习技术。这一阶段注重如何将多模态数据嵌入到一个统一的向量空间中,以便更好地进行跨模态关联。图谱嵌入技术为多模态知识图谱提供了更加灵活的表示形式。

3.4 模态关系预测与推理

最新的发展阶段涉及到对多模态关系的预测和推理。研究者致力于开发能够自动推断和理解不同模态数据之间关系的算法。这一阶段的研究旨在提升多模态知识图谱对于复杂任务的应用能力,包括关系预测、场景理解等。
在这里插入图片描述

3.5 知识图谱增强多模态任务

近年来,多模态知识图谱不仅仅被视为数据的整合,还成为增强多模态任务的有力工具。通过结合知识图谱,多模态任务在视觉、语言、推理等方面得到更全面的支持,推动了多模态智能系统的发展。

多模态知识图谱的发展历程体现了技术和方法的不断创新,同时也反映了对多模态数据处理的理解不断深化。随着各个阶段的不断推进,多模态知识图谱在推动人工智能技术的发展中发挥着越来越重要的作用。

4 多模态知识图谱示例

在这里插入图片描述

4.1 IMGpedia

IMGpedia是一个以图像为核心的多模态知识图谱,致力于整合丰富的视觉信息。通过将图像数据与其他模态数据相结合,IMGpedia为研究者和开发者提供了一个全面了解图像内容的平台。该知识图谱不仅关注视觉信息本身,还将其与语言和其他感知模态融合,实现了对图像语义的更深层次理解。

4.1 mmkg

mmkg是多模态知识图谱领域的先驱之一,其研究涵盖了图像、文本等多种模态。通过整合不同感知模态的信息,mmkg致力于构建一个更加全面和多维的知识图谱,为人工智能系统提供更为细致入微的认知基础。该知识图谱的研究对多模态数据的处理和表达方式产生了深远的影响。

4.1 ImageGraph

ImageGraph将图像信息与语言知识图谱相结合,丰富了知识表示。其独特之处在于通过图像数据的引入,使得知识图谱更加贴近真实场景。ImageGraph不仅强调对图像内容的理解,还注重如何将图像信息与文本知识相互连接,从而推动了多模态知识图谱在复杂任务中的应用。

4.1 Richpedia

Richpedia是多模态知识图谱领域的典范,包含了丰富的多模态数据。通过整合图像、音频、文本等不同模态的信息,Richpedia为研究者提供了一个广泛的数据集,促进了对多模态知识图谱算法和模型的研究。其开放性和丰富性使得Richpedia成为多领域多模态研究的重要资源。

5 多模态知识图谱研究方向

在这里插入图片描述

5.1 多模态关系预测与推理

多模态知识图谱研究的一个关键方向是通过整合来自不同模态的信息,提升对知识图谱中关系的预测和推理效果。结合图像、文本等多种数据,研究者致力于开发能够准确捕捉实体之间复杂关系的算法,从而丰富知识图谱的语义表达。

5.2 多模态知识问答

在多模态知识图谱的背景下,研究者探索如何结合图像、文本等多模态信息,提升知识问答系统的性能。通过深度学习和知识图谱的结合,多模态知识问答系统能够更准确地理解用户查询,实现更智能的答案生成。

5.3 场景图与知识图谱融合

一项重要的研究方向是将场景图与知识图谱进行融合,以丰富对实际场景的理解。通过合并外部知识库,多模态系统能够更好地理解图像或视频中所展示的场景,并从中提取更多语义信息,使得对场景的理解更加全面。

5.4 多模态推荐计算

多模态知识图谱的研究也涉及到在推荐系统中的应用,通过利用多模态信息提高个性化推荐的准确性。通过整合用户的行为数据、文本偏好和图像特征,研究者致力于提升推荐系统的性能,使其更贴近用户的兴趣和需求。

5.5 多模态语义搜索

多模态知识图谱研究的另一关键领域是提高搜索引擎对多模态数据的理解和搜索能力。通过整合语言、视觉等多模态信息,研究者试图使搜索引擎更智能地理解用户的查询意图,提供更精准、全面的搜索结果。

这些研究方向共同推动了多模态知识图谱的发展,为实现更为全面、智能的人工智能系统提供了重要的技术支持。通过深入研究这些方面,多模态知识图谱将更好地服务于各种应用领域。

结语

多模态知识图谱的发展为人工智能系统的感知与认知提供了更强大的工具。通过整合不同模态的信息,我们能够更全面、准确地理解世界,推动人工智能技术不断向前发展。未来,多模态知识图谱的研究将继续深入,为人工智能的发展开辟更广阔的领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1443267.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue源码系列讲解——虚拟DOM篇【四】(优化更新子节点)

目录 1. 前言 2. 优化策略介绍 3. 新前与旧前 4. 新后与旧后 5. 新后与旧前 6. 新前与旧后 7. 回到源码 8. 总结 1. 前言 在上一篇文章中,我们介绍了当新的VNode与旧的oldVNode都是元素节点并且都包含子节点时,Vue对子节点是 先外层循环newChil…

小游戏和GUI编程(5) | SVG图像格式简介

小游戏和GUI编程(5) | SVG图像格式简介 0. 问题 Q1: SVG 是什么的缩写?Q2: SVG 是一种图像格式吗?Q3: SVG 相对于其他图像格式的优点和缺点是什么?Q4: 哪些工具可以查看 SVG 图像?Q5: SVG 图像格式的规范是怎样的?Q6…

Python贝尔多项式

文章目录 Bell数和Bell多项式第二类Bell多项式 Bell数和Bell多项式 Bell,即所有包含 n n n个对象的有限集合的子集数之和,可通过递推式进行定义 B n ∑ k 0 n − 1 ( n − 1 k ) B k , B 0 1 B_n\sum^{n-1}_{k0}\begin{pmatrix} n-1\\k \end{pmatrix…

基于完全二叉树实现线段树-- [爆竹声中一岁除,线段树下苦踌躇]

文章目录 一.完全二叉树完全二叉树的父子结点引索关系 二.线段树三.基于完全二叉树实现线段树关于线段树的结点数量问题的证明递归建树递归查询区间和递归单点修改线段树模板题 一.完全二叉树 完全二叉树的物理结构是线性表,逻辑结构是二叉树 完全二叉树的父子结点引索关系 …

Javaweb之SpringBootWeb案例之事务管理的详细解析

1. 事务管理 1.1 事务回顾 在数据库阶段我们已学习过事务了,我们讲到: 事务是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体,一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功&am…

【nginx】starrocks通过nginx实现负载均衡、故障转移与flink运行SR实战

文章目录 一. 通过nginx实现starrocks负载均衡与故障转移1. 架构逻辑与nginx配置2. nginx相关知识:stream模块和http模块2.1. stream模块2.2. http模块 二. 使用flink 消费SR实战1. Expect: 100-continue 问题1.1. Expect: 100-continue的逻辑1.2. 问题分析与解决 2…

微软正在偷走你的浏览记录,Edge浏览器偷疯了

虽然现在 Edge 浏览器相当强大,甚至在某种程度上更符合中国用户的使用体验;但最近新的Edge浏览器推出后一直在使用的用户应该有感受到,原本的冰清玉洁的转校生慢慢小鸡脚藏不住了,广告越来越多,越来越流氓了。 电脑之前…

ubuntu彻底卸载cuda 重新安装cuda

sudo apt-get --purge remove "*cublas*" "*cufft*" "*curand*" \"*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "cuda*" "nsight*" cuda10以上 cd /usr/local/cuda-xx.x/bin/ s…

leetcode:51.N皇后

起初会想到暴力,但是N不确定,所以不确定for的嵌套层数,所以我们采用回溯算法。 树形结构: 1.树的深度是第depth层 2.树的宽度是对每一行进行遍历 代码实现: 1.result是三维数组,一个棋盘是二维&#x…

如何实现视线(目光)的检测与实时跟踪

如何实现视线(目光)的检测与实时跟踪 核心步骤展示说明 找到人脸 检测人脸特征点 根据特征点找到人眼区域 高精度梯度算法检测瞳孔中心 根据眼睛周边特征点计算眼睛中心 瞳孔中心和眼睛中心基于视线模型计算视线方向 视线方向可视化 详细实现与说明: https://stud…

挑战杯 python 爬虫与协同过滤的新闻推荐系统

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python 爬虫与协同过滤的新闻推荐系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&…

百面嵌入式专栏(面试题)驱动开发面试题汇总1.0

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将介绍驱动开发面试题 。 1、Linux驱动程序的功能是什么? 对设备初始化和释放。进行内核与硬件的数据交互。检测和处理设备出现的错误。2、内核程序中申请内存使用什么函数? 答案:kmalloc()、kzalloc()、vm…

微服务OAuth 2.1认证授权可行性方案(Spring Security 6)

文章目录 一、背景二、微服务架构介绍三、认证服务器1. 数据库创建2. 新建模块3. 导入依赖和配置4. 安全认证配置类 四、认证服务器测试1. AUTHORIZATION_CODE(授权码模式)1. 获取授权码2. 获取JWT 2. CLIENT_CREDENTIALS(客户端凭证模式) 五、Gateway1.…

基于物联网的实时数据分析(简单介绍)

在当今这个信息化、数字化飞速发展的时代,物联网(Internet of Things, IoT)和实时数据分析成为了技术革新的两大支柱。对于刚入行的新手来说,理解这两个概念及其相互作用不仅是迈入这一领域的第一步,更是掌握未来技术趋…

双重OSPF + OSPF综合实验

一、实验要求 1.R4为ISP,所连接的所有物理接口为公有网段,任意指定IP即可。 2.R1-2-3 构建一个星型结构的MGRE结构,其中R1为中心点,假设R1的公有IP为固定地址。 3.R1-5-6 构建另一个全连网状的MGRE网络,其中R1/5均为中…

【见微知著】OpenCV中C++11 lambda方式急速像素遍历

学习《OpenCV应用开发:入门、进阶与工程化实践》一书 做真正的OpenCV开发者,从入门到入职,一步到位! C11 lambda语法 C11中引入了lambda表达式,它支持定义一个内联(inline)的函数,作为一个本地的对象或者…

【MySQL】-12 MySQL索引(上篇MySQL索引类型前置-2-高性能的索引策略)

MySQL索引-高性能的索引策略 3 高性能的索引策略3.1 独立的列3.2 前缀索引和索引选择性3.3 多列索引3.4 选择合适的索引列顺序3.5 聚簇索引(Clustered Indexes)3.5.1 InnoDB和MyISAM的数据布局的比较3.5.2 按primary key的顺序插入行(InnoDB) 3.6 覆盖索引(Covering Indexes)3.…

【深度学习】实验7布置,图像超分辨

清华大学驭风计划 因为篇幅原因实验答案分开上传, 实验答案链接http://t.csdnimg.cn/P1yJF 如果需要更详细的实验报告或者代码可以私聊博主 有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~ 深度学习训练营 案例 7 &#xff1…

C语言每日一题(53)翻转二叉树

力扣网 226 翻转二叉树 题目描述 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 1: 输入:root [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]示例 2: 输入:root [2,1,3] 输出…

[动态规划]判断整除

题目 一个给定的正整数序列,在每个数之前都插入号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列: (1) (2) (4) 7 (1) (2) (-4) -1 (1) (-2) (4) 3 (1) (-2) (-4) -5 (-1) (2) (4) 5 (-1) (2) (-4) -3 (…