👑欢迎大家订阅本专栏,一起学习RT-DETR👑
一、本文介绍
Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用RT-DETR现有的一些功能进行一些实战, 让我们不仅会改进RT-DETR,也能够利用RT-DETR去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。
在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。
开始之前先给大家展示一下视频效果图,以下两幅动图片来自于ultralytics官方->
Logistics | Aquaculture |
---|---|
Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLguagua |
专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR
目录
一、本文介绍
二、项目完整代码
三、参数解析
四、项目的使用教程
4.1 步骤一
4.2 步骤二
五、本文总结
二、项目完整代码
帮我们将这个代码,复制粘贴到我们YOLOv8的仓库里然后创建一个py文件存放进去即可。
from ultralytics import RTDETR
from ultralytics.solutions import object_counter
import cv2
model = RTDETR("runs/train/exp18/weights/best.pt")
cap = cv2.VideoCapture("People.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(w, h))
# Init Object Counter
counter = object_counter.ObjectCounter()
counter.set_args(view_img=True,
reg_pts=region_points,
classes_names=model.names,
draw_tracks=True)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=True)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
三、参数解析
下面上面项目核心代码的参数解析,共有3个,能够起到作用的参数并不多,这里直接截图说明以下即可。
下面红框内的两个参数,一个为权重文件地址(可替换为自己训练的权重文件),第二个就是需要检测的视频地址,这里如果有实时性需求的是可以改成视频流的形式的。
下面红框内的参数为,视频中我们检测线的大小,和宽细已经横线在视频中的横纵坐标。
四、项目的使用教程
4.1 步骤一
我们在Yolo仓库的目录下创建一个py文件将代码存放进去,如下图所示。
4.2 步骤二
我们填好参数之后运行文件即可,此时会弹出视频框,然后就可以看到检测的效果了,我这里的视频找不到静态的没办法大家只能对付看以下。
五、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的RT-DETR改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~
专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR