数字图像处理实验记录十(图像分割实验)

news2024/11/15 4:03:31

一、基础知识

1、什么是图像分割
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。
2、图像分割是怎么实现的
图像分割算法基于像素值的不连续性和相似性,不连续性是图像的边缘,再根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合。

二、实验要求

三、实验记录(具体任务只展示对图片1的处理)

总代码:

clear all;
close all;
clc;
% 实验11 图像分割
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

I = imread('02.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片2_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片2_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片2_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');
I = imread('Acat.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片3_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片3_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片3_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');


任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。

H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。

figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。

figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

四、实验结果

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1440728.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java微服务学习Day1

文章目录 认识微服务服务拆分及远程调用服务拆分服务远程调用提供者与消费者 Eureka注册中心介绍构建EurekaServer注册user-serviceorder-service完成服务拉取 Ribbon负载均衡介绍原理策略饥饿加载 Nacos注册中心介绍配置分级存储负载均衡环境隔离nacos注册中心原理 认识微服务…

《剑指 Offer》专项突破版 - 面试题 30 和 31:详解如何设计哈希表以及利用哈希表设计更加高级、复杂的数据结构

目录 一、哈希表的基础知识 二、哈希表的设计 2.1 - 插入、删除和随机访问都是 O(1) 的容器 2.2 - 最近最少使用缓存 一、哈希表的基础知识 哈希表是一种常见的数据结构,在解决算法面试题的时候经常需要用到哈希表。哈希表最大的优点是高效,在哈希表…

java实现算法

一、二分法 二分法查找主要是为了快速查找给定数组内,期待值在数组中的位置(下标) 二分法查找通过对整个数组取中间值,判断期待值所在的范围并缩小范围,每次查找范围折半,直到范围的边界重合,…

终端命令提示符:如何查看我们电脑端口是否被占用和处理方式

文章目录 端口信息查看1、Windows:2、Linux/macOS: 使用 netstat使用 lsof 端口信息查看 在不同的操作系统中,查看端口是否被占用的指令有所不同。以下是一些常见的指令: 1、Windows: 使用命令行工具 netstat 来查看端口占用情况。 电脑键盘按住 win…

第九个知识点:内部对象

Date对象: <script>var date new Date();date.getFullYear();//年date.getMonth();//月date.getDate();//日date.getDay();//星期几date.getHours();//时date.getMinutes();//分date.getSeconds();//秒date.getTime();//获取时间戳&#xff0c;时间戳时全球统一&#x…

[计算机提升] 备份系统:系统映像

6.3 备份系统&#xff1a;系统映像 备份系统和还原系统是一套互补的操作。 操作系统的备份就是将操作系统当前的所有数据复制到硬盘的一个空闲区域&#xff0c;以防止系统崩溃或数据丢失。还原操作则是将先前备份的数据恢复到操作系统中&#xff0c;使系统回到之前的样子&…

Python进程之串行与并行

串行和并行 串行指的是任务的执行方式。串行在执行多个任务时&#xff0c;各个任务按顺序执行&#xff0c;完成一个之后才能进行下一个。&#xff08;早期单核CPU的情况下&#xff09; 并行指的是多个任务在同一时刻可以同时执行&#xff08;前提是多核CPU&#xff09;&#…

蓝桥杯备赛Day9——链表进阶

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head = [1,2,3,4,5], n = 2 输出:[1,2,3,5]示例 2: 输入:head = [1], n = 1 输出:[]示例 3: 输入:head = [1,2], n = 1 输出:[1]提示: 链表中结点的数目为 sz1 <= sz <= 300 &l…

2024-02-07(Sqoop,Flume)

1.Sqoop的增量导入 实际工作中&#xff0c;数据的导入很多时候只需要导入增量的数据&#xff0c;并不需要将表中的数据每次都全部导入到hive或者hdfs中&#xff0c;因为这样会造成数据重复问题。 增量导入就是仅导入新添加到表中的行的技术。 sqoop支持两种模式的增量导入&a…

sqli.labs靶场(41-53关)

41、第四十一关 -1 union select 1,2,3-- -1 union select 1,database(),(select group_concat(table_name) from information_schema.tables where table_schemadatabase()) -- -1 union select 1,2,(select group_concat(column_name) from information_schema.columns wher…

2024年【天津市安全员B证】模拟试题及天津市安全员B证模拟考试题库

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 天津市安全员B证模拟试题是安全生产模拟考试一点通生成的&#xff0c;天津市安全员B证证模拟考试题库是根据天津市安全员B证最新版教材汇编出天津市安全员B证仿真模拟考试。2024年【天津市安全员B证】模拟试题及天津市…

零基础学Python之Unitest模块

1.unittest简介及入门案例 &#xff08;1&#xff09;什么是Unitest Unittest是Python自带的单元测试框架&#xff0c;不仅适用于单元测试&#xff0c;还可用于Web、Appium、接口自动化测试用例的开发与执行。该测试框架可组织执行测试用例&#xff0c;并且提供丰富的断言方法…

如何使用CLZero对HTTP1.1的请求走私攻击向量进行模糊测试

关于CLZero CLZero是一款功能强大的模糊测试工具&#xff0c;该工具可以帮助广大研究人员针对HTTP/1.1 CL.0的请求走私攻击向量进行模糊测试。 工具结构 clzero.py - 工具主脚本&#xff1b; default.py - 包含了大多数标准攻击测试方法和字符&#xff1b; exhaustive.py - 包…

Git介绍和常用命令说明

目录 一、Git概述 1.1 Git是什么 1.2 Git有什么用 1.3 Git仓库介绍 二、Git下载与安装 三、Git代码托管服务&#xff08;远程仓库&#xff09; 四、Git常用命令 4.1 设置用户信息 4.2 获取Git仓库 4.2.1 本地初始化Git仓库 4.2.2 从远程仓库克隆 4.3 本地仓库操作 …

navigator.mediaDevices.getUserMedia获取本地音频/麦克权限并提示用户

navigator.mediaDevices.getUserMedia获取本地音频/麦克权限并提示用户 效果获取权限NotFoundErrorNotAllowedError 代码 效果 获取权限 NotFoundError NotAllowedError 代码 // 调用 captureLocalMedia()// 方法 function captureLocalMedia() {console.warn(Requesting lo…

Mac 下JDK环境变量配置 及 JDK多版本切换

一、推荐官网下载&#xff1a; 二、环境变量配置 1、查看JDK地址&#xff0c;在终端输入以下命令&#xff1a; /usr/libexec/java_home -V 我的路径&#xff1a; /Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home /Library/Java/JavaVirtualMachines/zulu-11.j…

MGIE官网体验入口 苹果多模态大语言模型AI图像编辑工具在线使用地址

MGIE是一项由苹果开源的技术&#xff0c;利用多模态大型语言模型&#xff08;MLLMs&#xff09;生成图像编辑指令&#xff0c;通过端到端训练&#xff0c;捕捉视觉想象力并执行图像处理操作&#xff0c;使图像编辑更加智能、直观。 MGIE官网体验入口https://github.com/apple/M…

Python进行AI声音克隆的端到端指南

人工智能语音克隆是一种捕捉声音的独特特征&#xff0c;然后准确性复制它的技术。这种技术不仅可以让我们复制现有的声音&#xff0c;还可以创造全新的声音。它是一种彻底改变内容创作的工具&#xff0c;从个性化歌曲到自定义画外音&#xff0c;开辟了一个超越语言和文化障碍的…

异常统一处理:MissingServletRequestParameterException(遗漏Servlet请求参数异常)

一、引言 本篇内容是“异常统一处理”系列文章的重要组成部分&#xff0c;主要聚焦于对 MissingServletRequestParameterException 的原理解析与异常处理机制&#xff0c;并给出测试案例。 关于 全局异常统一处理 的原理和完整实现逻辑&#xff0c;请参考文章&#xff1a; 《S…

Linux基础I/O(中)——重定向

重定向 根据上一篇的文章我们知道&#xff0c;文件描述符是什么。 0->stdin; 1->stdout; 2->stderr; 如果我们新打开一个文件的话&#xff0c;该文件描述符为3&#xff0c;如下图&#xff1a; &#xff1a;&#xff1a;“ 如果我先close(1),再打开一个文件,根据之前的…