剪枝操作讲解:(已观看)
带你学透回溯算法-组合问题的剪枝操作(对应力扣题目:77.组合)| 回溯法精讲!_哔哩哔哩_bilibili
216.组合总和III(已观看)
1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、题目:
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
- 所有数字都是正整数。
- 解集不能包含重复的组合。
示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]
示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]
4、视频链接:
和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III_哔哩哔哩_bilibili
5、思路:
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
相对于77. 组合(opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。
想到这一点了,做过77. 组合(opens new window)之后,本题是简单一些了。
本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。
例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。
选取过程如图:
图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。
#回溯三部曲
- 确定递归函数参数
和77. 组合(opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
接下来还需要如下参数:
- targetSum(int)目标和,也就是题目中的n。
- k(int)就是题目中要求k个数的集合。
- sum(int)为已经收集的元素的总和,也就是path里元素的总和。
- startIndex(int)为下一层for循环搜索的起始位置。
所以代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
- 确定终止条件
什么时候终止呢?
在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size() 和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
- 单层搜索过程
本题和77. 组合(opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9
如图:
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
代码如下:
for (int i = startIndex; i <= 9; i++) {
sum += i;
path.push_back(i);
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!
参照关于回溯算法,你该了解这些!(opens new window)中的模板,不难写出如下C++代码:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// targetSum:目标和,也就是题目中的n。
// k:题目中要求k个数的集合。
// sum:已经收集的元素的总和,也就是path里元素的总和。
// startIndex:下一层for循环搜索的起始位置。
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9; i++) {
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
#剪枝
这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。
如图:
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:
if (sum > targetSum) { // 剪枝操作
return;
}
当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
if (sum > targetSum) { // 剪枝操作
sum -= i; // 剪枝之前先把回溯做了
path.pop_back(); // 剪枝之前先把回溯做了
return;
}
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
和回溯算法:组合问题再剪剪枝(opens new window)一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。
最后C++代码如下:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return;
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
#总结
开篇就介绍了本题与77.组合(opens new window)的区别,相对来说加了元素总和的限制,如果做完77.组合(opens new window)再做本题在合适不过。
分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。
相信做完本题,大家对组合问题应该有初步了解了。
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backtrack(k, n, 1, 0);
return res;
}
private void backtrack(int k, int n, int start, int sum) {
// 剪枝操作
if (sum > n) {
return;
}
if (path.size() == k) {
if (sum == n) {
res.add(new ArrayList<>(path));
}
return;
}
// 剪枝9 - (k - path.size()) + 1
for (int i = start; i <= 9 - (k - path.size()) + 1; i++) {
path.add(i);
sum += i;
backtrack(k, n, i + 1, sum);
// 回溯
path.removeLast();
// 回溯
sum -= i;
}
}
}
17.电话号码的字母组合(已观看)
1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、题目:
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
示例:
- 输入:"23"
- 输出:["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
说明:尽管上面的答案是按字典序排列的,但是你可以任意选择答案输出的顺序。
4、视频链接:
和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III_哔哩哔哩_bilibili
5、思路:
从示例上来说,输入"23",最直接的想法就是两层for循环遍历了吧,正好把组合的情况都输出了。
如果输入"233"呢,那么就三层for循环,如果"2333"呢,就四层for循环.......
大家应该感觉出和77.组合(opens new window)遇到的一样的问题,就是这for循环的层数如何写出来,此时又是回溯法登场的时候了。
理解本题后,要解决如下三个问题:
- 数字和字母如何映射
- 两个字母就两个for循环,三个字符我就三个for循环,以此类推,然后发现代码根本写不出来
- 输入1 * #按键等等异常情况
#数字和字母如何映射
可以使用map或者定义一个二维数组,例如:string letterMap[10],来做映射,我这里定义一个二维数组,代码如下:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
#回溯法来解决n个for循环的问题
对于回溯法还不了解的同学看这篇:关于回溯算法,你该了解这些!(opens new window)
例如:输入:"23",抽象为树形结构,如图所示:
图中可以看出遍历的深度,就是输入"23"的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]。
回溯三部曲:
- 确定回溯函数参数
首先需要一个字符串s来收集叶子节点的结果,然后用一个字符串数组result保存起来,这两个变量我依然定义为全局。
再来看参数,参数指定是有题目中给的string digits,然后还要有一个参数就是int型的index。
注意这个index可不是 77.组合(opens new window)和216.组合总和III(opens new window)中的startIndex了。
这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。
代码如下:
vector<string> result;
string s;
void backtracking(const string& digits, int index)
- 确定终止条件
例如输入用例"23",两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。
那么终止条件就是如果index 等于 输入的数字个数(digits.size)了(本来index就是用来遍历digits的)。
然后收集结果,结束本层递归。
代码如下:
if (index == digits.size()) {
result.push_back(s);
return;
}
- 确定单层遍历逻辑
首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。
然后for循环来处理这个字符集,代码如下:
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
注意这里for循环,可不像是在回溯算法:求组合问题!(opens new window)和回溯算法:求组合总和!(opens new window)中从startIndex开始遍历的。
因为本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而77. 组合(opens new window)和216.组合总和III(opens new window)都是求同一个集合中的组合!
注意:输入1 * #按键等等异常情况
代码中最好考虑这些异常情况,但题目的测试数据中应该没有异常情况的数据,所以我就没有加了。
但是要知道会有这些异常,如果是现场面试中,一定要考虑到!
关键地方都讲完了,按照关于回溯算法,你该了解这些!(opens new window)中的回溯法模板,不难写出如下C++代码:
// 版本一
class Solution {
private:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
public:
vector<string> result;
string s;
void backtracking(const string& digits, int index) {
if (index == digits.size()) {
result.push_back(s);
return;
}
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
}
vector<string> letterCombinations(string digits) {
s.clear();
result.clear();
if (digits.size() == 0) {
return result;
}
backtracking(digits, 0);
return result;
}
};
- 时间复杂度: O(3^m * 4^n),其中 m 是对应四个字母的数字个数,n 是对应三个字母的数字个数
- 空间复杂度: O(3^m * 4^n)
class Solution {
// 设置全局列表存储最后的结果
List<String> list = new ArrayList<>();
public List<String> letterCombinations(String digits) {
if (digits == null || digits.length() == 0) {
return list;
}
// 初始对应所有的数字,为了直接对应2-9,新增了两个无效的字符串""
String[] numString = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
// 迭代处理
backTracking(digits, numString, 0);
return list;
}
// 每次迭代获取一个字符串,所以会设计大量的字符串拼接,所以这里选择更为高效的 StringBuild
StringBuilder temp = new StringBuilder();
// 比如digits如果为"23",num 为0,则str表示2对应的 abc
public void backTracking(String digits, String[] numString, int num) {
// 遍历全部一次记录一次得到的字符串
if (num == digits.length()) {
list.add(temp.toString());
return;
}
// str 表示当前num对应的字符串
String str = numString[digits.charAt(num) - '0'];
for (int i = 0; i < str.length(); i++) {
temp.append(str.charAt(i));
// c
backTracking(digits, numString, num + 1);
// 剔除末尾的继续尝试
temp.deleteCharAt(temp.length() - 1);
}
}
}