【最详解】如何进行点云的凹凸缺陷检测(opene3D)(完成度80%)

news2025/1/15 7:08:35

文章目录

  • 前言
  • 实现思路
    • 想法1
    • 想法2
    • 想法3
  • 补充
  • 实现
    • 想法1
    • 想法2
      • 代码
    • 想法3
      • 代码
  • 总结


前言

读前须知
首先我们得确保你已经完全知晓相关的基本的数学知识,其中包括用最小二乘法拟合曲二次曲面,以及曲面的曲率详细求解。若还是没弄清楚,则详细请看下面链接。

【点云、图像】学习中 常见的数学知识及其中的关系与python实战[更新中](建议从一个标题上从上往下看,比较循序渐进)

补充:曲率:反映曲面在某一点处的弯曲程度,它与该点及其邻近点的位置和法向量有关。

以及一些open3d的常见操作:
爆肝5万字❤️Open3D 点云数据处理基础(Python版)

先上结果:
在这里插入图片描述


实现思路

不同于常见的缺陷检测,如:划痕或者斑点这些肉眼可见的缺陷,凹凸性缺陷难以肉眼可见甚至得打光照射才能看见凹槽,这里我们使用深度摄像机(普通相机+深度信息),来采集深度信息。此时我们把图像称为深度图,当然深度图也可以转换为点云。

这里我们仅对点云这种数据进行处理。

要求:对异形曲面微细缺陷识别(我6月份之前要完成的毕设)
这里缺陷主要指凸起和凹槽。

想法1

想法1:如果是一个平面上出现凹槽或凸起的话,首先确立一个由大部分点拟合的平面,然后对不在此平面的点云进行高程分析,以确立凹陷或凸起程度。
(事实上不会很平,于是想法1排除,但可以用来做平面来做一个简单示例)

想法2

想法2:计算点云上每个点的领域曲率来描绘点的弯曲程度。

想法3

想法3:计算点云上每个点的高斯曲率和平均曲率来描绘点的弯曲程度。

补充

机器学习——详解KD-Tree原理

实现

想法1

暂无

想法2

想法2:
在求取完领域曲率的基础上,我们对其曲率的大小进行一个分割,并进行可视化。

这里进一步对这个领域曲率的定义进行详解。
首先,我们已经在这里的实战1了解到了领域曲率的求法。
在这里插入图片描述

基于邻域特征点提取和匹配的点云配准_李新春

可是这个定义我只在其他的博客中和下面这篇论文中找到定义,并无在wiki百科中找到相关阐述。

找了半天后依然无法解释其中原因,于是在参考了下面两篇博文后
如何理解矩阵特征值?
特征值的最大值与最小值
想出了这么一个合理的解释:
1、这个曲率定义的优点是,它不依赖于法向量的方向,而且它的值域是 [0, 1/3],这使得它比较容易进行归一化和可视化。

2、那么,为什么用最小的特征值除以特征值和,而不是用最大的特征值除以特征值和呢?

这是因为最小的特征值对应的特征向量是曲面的法向量,而最大的特征值对应的特征向量是曲面的主方向。

如果用最大的特征值除以特征值和,那么曲率的值就会与曲面的主方向的弯曲程度成正比,而与曲面的法向方向的弯曲程度无关。这样就会忽略掉曲面的凹凸变化,导致曲率的计算不准确。

如果用最小的特征值除以特征值和,那么曲率的值就会与曲面的法向方向的弯曲程度成正比,而与曲面的主方向的弯曲程度无关。这样就可以反映出曲面的凹凸变化,提高曲率的计算精度。

因此,用最小的特征值除以特征值和,而不是用最大的特征值除以特征值和,是为了更好地描述曲面的局部形状,而不是曲面的整体方向。

于是我们就可以坦然用这个定义来求取了。

代码

怕点云太多算不过来,首先对例子中的兔子点云进行了一个下采样。(如何获取兔子点云到时候再出教程)

import open3d as o3d
import numpy as np

def pca_compute(data, sort=True): #1、主成分分析
    average_data = np.mean(data, axis=0) # 求每一列的平均值,即求各个特征的平均值
    decentration_matrix = data - average_data  # 去中心化矩阵
 
    H = np.dot(decentration_matrix.T, decentration_matrix)  # 求协方差矩阵 #协方差是衡量两个变量关系的统计量,协方差为正表示两个变量正相关,为负表示两个变量负相关
    eigenvectors, eigenvalues, eigenvectors_T = np.linalg.svd(H) # 求特征值与特征向量 #H = UΣV^T #输出列向量、对角矩阵、行向量
    if sort:
        sort = eigenvalues.argsort()[::-1] # 从大到小排序 .argsort()是升序排序,[::-1]是将数组反转,实现降序排序
        eigenvalues = eigenvalues[sort] # 特征值  ## 使用索引来获取排序后的数组
    return eigenvalues
 
def caculate_surface_curvature(radius,pcd):#2、计算点云的表面曲率
    cloud = pcd
    points = np.asarray(cloud.points) #点云转换为数组 点云数组形式为[[x1,y1,z1],[x2,y2,z2],...]
    kdtree = o3d.geometry.KDTreeFlann(cloud) #建立KDTree
    num_points = len(cloud.points) #点云中点的个数
    curvature = []  # 储存表面曲率
    for i in range(num_points):
        k, idx, _ = kdtree.search_radius_vector_3d(cloud.points[i], radius) #返回邻域点的个数和索引
        neighbors = points[idx] #数组形式为[[x1,y1,z1],[x2,y2,z2],...]
        w = pca_compute(neighbors)#调用第1步  #由降序排序,w[2]为最小特征值  #np.zeros_like(w[2])生成与w[2]相同形状的全0数组
        delt = np.divide(w[2], np.sum(w)) #根据公式求取领域曲率
        curvature.append(delt)
    curvature = np.array(curvature, dtype=np.float64)
    return curvature
 
def curvature_normal():#3、曲率归一化 从0-1/3归到0-1之间
    curvature = caculate_surface_curvature(radius,pcd) #调用第2步
    c_max = max(curvature)
    c_min = min(curvature)
    cur_normal = [(float(i) - c_min) / (c_max - c_min) for i in curvature] 
    return cur_normal
 
def draw(cur_max,cur_min,pcd):#4、绘图
    cur_normal = curvature_normal()#调用第3步
    pcd.paint_uniform_color([0.5,0.5,0.5]) #初始化所有颜色为灰色
    for i in range(len(cur_normal)):
        if 0 < cur_normal[i] <= cur_min: #归一化后的曲率
            np.asarray(pcd.colors)[i] = [1, 0, 0]#红
        elif cur_min < cur_normal[i] <= cur_max:
            np.asarray(pcd.colors)[i] = [0, 1, 0]#绿
        elif cur_max < cur_normal[i] <= 1: 
            np.asarray(pcd.colors)[i] = [0, 0, 1]#蓝
 
    # 可视化
    o3d.visualization.draw_geometries([pcd])

cur_max = 0.7 
cur_min = 0.3 #曲率分割基准
radius = 0.05
voxel_size = 0.01 #越小密度越大
pcd = o3d.io.read_point_cloud("bunny.pcd")
print(pcd)
pcd = pcd.voxel_down_sample(voxel_size) #下采样
draw(cur_max,cur_min,pcd)
 

结果:
在这里插入图片描述
这个长度,宽度报错可以不管,有点子强迫症的可以在可视化改成:

    o3d.visualization.draw_geometries([pcd],window_name="可视化原始点云",
                                      width=800, height=800, left=50, top=50,
                                      mesh_show_back_face=False)

在这里插入图片描述
红色为曲率较低,绿色曲率中等,蓝色曲率较高。
发现效果上不太行,红色一些部分看着曲率也很高,甚至还出现了一个初始化时候的灰点,可能求邻近点的时候没取到?不曾得知。

想法3

首先我们在这里的高斯曲率和平均曲率求解有了一些认识。
附一张图:
在这里插入图片描述

代码

import open3d as o3d
import numpy as np
from scipy.optimize import curve_fit

voxel_size = 0.01 #越小密度越大
radius = 0.07
pcd = o3d.io.read_point_cloud("bunny.pcd")
pcd = pcd.voxel_down_sample(voxel_size) #下采样
cloud = pcd
points = np.asarray(cloud.points) #点云转换为数组 点云数组形式为[[x1,y1,z1],[x2,y2,z2],...]
kdtree = o3d.geometry.KDTreeFlann(cloud) #建立KDTree
num_points = len(cloud.points) #点云中点的个数
pcd.paint_uniform_color([1, 0, 0])  # 初始化所有颜色为红色
# 定义非线性函数,这里假设是一个二次曲面
def func(x, a, b, c, d, e, f):
    return a * x[0]**2 + b * x[1]**2 + c * x[0] * x[1] + d * x[0] + e * x[1] + f
def f(x, y):
    return popt[0]*x**2 +popt[1]*y**2 +popt[2]* x*y +popt[3]*x + popt[4]*y +popt[5]
# 定义曲面的梯度函数,即一阶偏导数
def gradient(f, x, y):
    # 使用中心差分法近似求导  #参考https://cloud.tencent.com/developer/article/1685164
    h = 1e-6 # 差分步长,可以根据精度要求调整
    df_dx = (f(x + h, y) - f(x - h, y)) / (2 * h) # 对x求偏导
    df_dy = (f(x, y + h) - f(x, y - h)) / (2 * h) # 对y求偏导
    return df_dx, df_dy
# 定义曲面的曲率函数,即二阶偏导数
def curvature(f, x, y):
    # 使用中心差分法近似求导
    h = 1e-6 # 差分步长,可以根据精度要求调整
    d2f_dx2 = (f(x + h, y) - 2 * f(x, y) + f(x - h, y)) / (h ** 2) # 对x求二阶偏导
    d2f_dy2 = (f(x, y + h) - 2 * f(x, y) + f(x, y - h)) / (h ** 2) # 对y求二阶偏导
    d2f_dxdy = (f(x + h, y + h) - f(x + h, y - h) - f(x - h, y + h) + f(x - h, y - h)) / (4 * h ** 2) # 对xy求混合偏导
    # 根据公式计算高斯曲率K和平均曲率H
    df_dx, df_dy = gradient(f, x, y) # 调用梯度函数求一阶偏导
    E = 1 + df_dx ** 2
    F = df_dx * df_dy
    G = 1 + df_dy ** 2
    L = d2f_dx2 / np.sqrt(1 + df_dx ** 2 + df_dy ** 2) #np.sqrt()表示开方
    M = d2f_dxdy / np.sqrt(1 + df_dx ** 2 + df_dy ** 2)
    N = d2f_dy2 / np.sqrt(1 + df_dx ** 2 + df_dy ** 2)
    K = (L * N - M ** 2) / (E * G - F ** 2) # 高斯曲率
    H = (E * N + G * L - 2 * F * M) / (2 * (E * G - F ** 2)) # 平均曲率
    return K, H

curvatures = []  
for i in range(num_points):
    k, idx, _ = kdtree.search_radius_vector_3d(cloud.points[i], radius) #返回邻域点的个数和索引
    neighbors = points[idx] #数组形式为[[x1,y1,z1],[x2,y2,z2],...]
    #print(k)
    Y = neighbors[:, 2] # 因变量
    X = neighbors[:, [0,1]] # 自变量 [[2,3],[1,1],[8,9],[11,12],[4,5],[8,9]] 6*2
    popt, pcov = curve_fit(func, xdata=X.T,ydata= Y)
    x = cloud.points[i][0] # 某一点的x坐标
    y = cloud.points[i][1] # 某一点的y坐标
    K, H = curvature(f, x, y) # 计算该点的曲率
    curvatures.append([K,H])

print(curvatures)
for i in range(len(curvatures)):
    if -0.05<curvatures[i][0] < 0.05 and -0.05<curvatures[i][1] <0.05: #平坦
        np.asarray(pcd.colors)[i] = [0, 0, 0]#黑
    elif -0.05<curvatures[i][0] < 0.05 and curvatures[i][1] >0.05:  #凸
        np.asarray(pcd.colors)[i] = [1, 0, 0]#红
    elif -0.05<curvatures[i][0] < 0.05 and -0.05<curvatures[i][1] <0.05: #凹
        np.asarray(pcd.colors)[i] = [0, 1, 0]#绿
    elif curvatures[i][0] < -0.05 and curvatures[i][1] >0.05: #鞍形脊 大部分凸,少部分凹
        np.asarray(pcd.colors)[i] = [0, 0, 1]#蓝
    elif curvatures[i][0] < -0.05 and curvatures[i][1] <-0.05: #鞍形谷 大部分凹,少部分凸
        np.asarray(pcd.colors)[i] = [0, 1, 1]#青
    elif curvatures[i][0] > 0.05 and curvatures[i][1] >0.05: #峰 
        np.asarray(pcd.colors)[i] = [1, 0, 1]#紫
    elif curvatures[i][0] > 0.05 and curvatures[i][1] <-0.05: #阱
        np.asarray(pcd.colors)[i] = [1, 1, 0]#黄


#显示点云
o3d.visualization.draw_geometries([pcd])

结果:
在这里插入图片描述
结果出奇的好,每个点都进行了划分,比想法1好太多了。这里暂时用兔子点云测试,到时候创造一些平面点云再来测试一下。


总结

学习东西都不是一蹴而就的,果然还是得一步一步脚踏实地地学才学的明白。chatgpt是个好东西,只有你也会点东西时,它才会回答的正确,不能轻信之。

未完成:
ps:1、兔子点云pcd读取
2、创建平面点云
3、返回面积、深度信息

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1439717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《幻兽帕鲁》攻略:0基础入门及游戏基础操作 幻兽帕鲁基础设施 幻兽帕鲁基础攻击力 Mac苹果电脑玩幻兽帕鲁 幻兽帕鲁加班加点

今天就跟大家聊聊《幻兽帕鲁》攻略&#xff1a;0基础入门及游戏基础操作。 如果想在苹果电脑玩《幻兽帕鲁》记得安装CrossOver哦。 以下纯干货&#xff1a; CrossOver正版安装包&#xff08;免费试用&#xff09;&#xff1a;https://souurl.cn/Y1gDao 一、基础操作 二、界面…

稳压二极管应用电路

稳压二极管比较特殊&#xff0c;基本结构与普通二极管一样&#xff0c;也有一个PN结。由于制造工艺的不同&#xff0c;当这种PN结处于反向击穿状态时&#xff0c;PN结不会损坏(普通二极管的PN结是会损坏)&#xff0c;在稳压二极管用来稳定电压时就是利用它的这一击穿特性。 由…

【学网攻】 第(23)节 -- PPP协议

系列文章目录 目录 系列文章目录 文章目录 前言 一、PPP协议是什么&#xff1f; 二、实验 1.引入 实验目的 实验背景你是某公司的网络管理员&#xff0c;现在需要与另一个公司进行通信,需要你配置PPP协议保证双方发送的人是真正的而非黑客 技术原理 实验步骤新建Pack…

MySQL学习记录——유 表的约束

文章目录 1、了解2、空属性3、默认值default4、列描述comment就是注释&#xff0c;desc看不到&#xff0c;show能看到。5、zerofill6、主键7、自增长auto_increment8、唯一键9、外键 1、了解 只有数据类型的约束肯定不够&#xff0c;mysql还有表的约束来进而保证数据合法性。约…

安全名词解析-威胁情报、蜜罐技术

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 威胁情报02 蜜罐技术 01 威胁情报 威胁情报(Threat Intelligence)&#xff0c;也被称作安全情报(Security Intelligence)、安全威胁情报(Security Threat Intelligence)。 关于威胁情报的定义有很多…

redis的主从配置模拟(一主双从)

目录 先来给大家扩展机道面试官经常会问到关于redis的题 一、redis有哪些好处 二、redis相比memcached有哪些优势 三、redis常见性能问题和解决方案 四、redis集群的工作原理 五、redis主从的原理 redis的主从配置模拟&#xff08;一主双从&#xff09; 一、准备环境 …

C++ 内存管理(newdelete)

目录 本节目标 1. C/C内存分布 2. C语言中动态内存管理方式&#xff1a;malloc/calloc/realloc/free 3. C内存管理方式 3.1 new/delete操作内置类型 3.2 new和delete操作自定义类型 4. operator new与operator delete函数 5. new和delete的实现原理 6. 定位new表达式(placem…

Visio 2019下载安装教程,保姆级教程,附安装包

前言 Visio是负责绘制流程图和示意图的软件&#xff0c;便于IT和商务人员就复杂信息、系统和流程进行可视化处理、分析和交流&#xff0c;可以促进对系统和流程的了解&#xff0c;深入了解复杂信息并利用这些知识做出更好的业务决策。帮助您创建具有专业外观的图表&#xff0c…

Redis中内存淘汰算法实现

Redis中内存淘汰算法实现 Redis的maxmemory支持的内存淘汰机制使得其成为一种有效的缓存方案&#xff0c;成为memcached的有效替代方案。 当内存达到maxmemory后&#xff0c;Redis会按照maxmemory-policy启动淘汰策略。 Redis 3.0中已有淘汰机制&#xff1a; noevictionall…

【STL】list模拟实现

vector模拟实现 一、接口大框架函数声明速览二、结点类的模拟实现1、构造函数 三、迭代器类的模拟实现1、迭代器类存在的意义2、迭代器类的模板参数说明3、构造函数4、运算符的重载&#xff08;前置和后置&#xff09;&#xff08;1&#xff09;前置&#xff08;2&#xff09;后…

单片机学习笔记---LED点阵屏显示图形动画

目录 LED点阵屏显示图形 LED点阵屏显示动画 最后补充 上一节我们讲了点阵屏的工作原理&#xff0c;这节开始代码演示&#xff01; 前面我们已经说了74HC595模块也提供了8个LED&#xff0c;当我们不使用点阵屏的时候也可以单独使用74HC595&#xff0c;这8个LED可以用来测试7…

cpp11新特性之智能指针(下):深入理解现代cpp中的智能指针shared_ptr、unique_ptr 以及 weak_ptr

目录 写在前面 unique_ptr shared_ptr weak_ptr 智能指针的使用陷阱 致谢 写在前面 上一篇文章同大家深入探讨了auto_ptr。今天给大家带来的是对于 shared_ptr、unique_ptr 以及 weak_ptr 的深入理解&#xff0c;通过测试案例和源码剖析对这三种重要的智能指针的使用方法&…

阿里云学生服务器完成验证领取300元无门槛代金券和优惠权益

阿里云高校计划「云工开物」学生和教师均可参与&#xff0c;完成学生认证和教师验证后学生可以免费领取300元无门槛代金券和3折优惠折扣&#xff0c;适用于云服务器等全量公共云产品&#xff0c;订单原价金额封顶5000元/年&#xff0c;阿里云百科aliyunbaike.com分享阿里云高校…

[linux]:匿名管道和命名管道(什么是管道,怎么创建管道(函数),匿名管道和命名管道的区别,代码例子)

目录 一、匿名管道 1.什么是管道&#xff1f;什么是匿名管道&#xff1f; 2.怎么创建匿名管道&#xff08;函数&#xff09; 3.匿名管道的4种情况 4.匿名管道有5种特性 5.怎么使用匿名管道&#xff1f;匿名管道有什么用&#xff1f;&#xff08;例子&#xff09; 二、命名…

Android SDK 上传 Maven 喂奶级教程

最近领导给安排了个任务&#xff0c;让我把我们现有的一个 SDK 上传到 Maven 上去&#xff0c;方便客户直接用 gradle 依赖&#xff0c;不再需要拷贝 jar 和 so 了&#xff0c;此前我也看过一些相关的文章我想问题也不大&#xff0c;觉得工作量也就一两天的事情&#xff0c;主要…

imgaug数据增强神器:增强器一览

官网&#xff1a;imgaug — imgaug 0.4.0 documentationhttps://imgaug.readthedocs.io/en/latest/ github:GitHub - aleju/imgaug: Image augmentation for machine learning experiments. imgaug数据增强神器&#xff1a;增强器一览_iaa 图像增强改变颜色-CSDN博客文章浏览阅…

苹果电脑如何清理内存?2024最新经验教程分享

经常听到同事抱怨她的苹果电脑运行缓慢&#xff0c;经常在我们面前表示不满。这引起了我的好奇&#xff0c;为什么一个设计优雅、性能强大的苹果电脑会出现这种情况&#xff1f;在网上一番搜索后&#xff0c;我发现了问题的关键——内存。尤其是运行了很多应用程序的MacBook&am…

什么是网络渗透,应当如何防护?

什么是网络渗透 网络渗透是攻击者常用的一种攻击手段&#xff0c;也是一种综合的高级攻击技术&#xff0c;同时网络渗透也是安全工作者所研究的一个课题&#xff0c;在他们口中通常被称为"渗透测试(Penetration Test)"。无论是网络渗透(Network Penetration)还是渗透…

牛客网SQL264:查询每个日期新用户的次日留存率

官网链接&#xff1a; 牛客每个人最近的登录日期(五)_牛客题霸_牛客网牛客每天有很多人登录&#xff0c;请你统计一下牛客每个日期新用户的次日留存率。 有一个登录(login。题目来自【牛客题霸】https://www.nowcoder.com/practice/ea0c56cd700344b590182aad03cc61b8?tpId82 …

政安晨:快速学会~机器学习的Pandas数据技能(一)(建立与读数据)

阅读数据是您处理数据的第一步&#xff0c;而数据是人工智能时代里机器学习的生产资料。 概述 在这个系列中&#xff0c;您将学习关于pandas的所有内容&#xff0c;它是最受欢迎的用于数据分析的Python库。 在学习过程中&#xff0c;你将完成几个实际数据的实践练习。建议您在阅…