Flink实战六_直播礼物统计

news2025/1/19 13:23:27

接上文:Flink实战五_状态机制

1、需求背景

现在网络直播平台非常火爆,在斗鱼这样的网络直播间,经常可以看到这样的总榜排名,体现了主播的人气值。

人气值计算规则:用户发送1条弹幕互动,赠送1个荧光棒免费道具、100个免费鱼丸、亲密度礼物等行为,均可为主播贡献1点及以上人气值。

我们就以这个人气值日榜为例,来设计一个Flink的计算程序。

在这里插入图片描述
对于人气值日榜这样的功能,可以理解为是一个典型的流式计算的场景,强调的是数据的实时处理。因为在这个场景下,必须要及时的累计用户的送礼物数据,才能形成你追我赶的实时效果,提升用户的参与体验。这个场景下的实时性,虽然不要求每一条数据都及时响应,但是整体的数据延迟还是要尽量缩短的。

这种场景下,使用Flink进行流批统一的计算,感觉就非常合适。

2、数据流程设计

在确定了使用Flink进行计算后,首先就需要设计出数据的上下游流程,进行简单的方案可行性评估。

对于数据上游,我们这个人气值日榜统计的业务场景,数据来源自然就是粉丝们的打赏行为。一方面整个平台的打赏行为的数据量是非常大的,另一方面这些打赏行为涉及到账户操作,所以他的作用,更大的是体现在人气值榜功能以外的其他业务过程中。基于这两方面考虑,自然就会想到使用kafka来进行削峰以及解耦。而Flink在DataStream/DataSet API和 Table API&SQL 两个部分都对kafka提供了连接器实现,所以用kafka作为数据接入是可行的。

而对于数据下游,其实可以想象,最终计算出来的数据,最为重要的是要强调查询的灵活性以及时效性,这样才能支持页面的快速查询。如果考虑查询的时效性,HBase和ElasticSearch都是比较理想的大数据存储引擎。但是如果考虑到查询的灵活性,就会想到ElasticSearch会相比HBase更适合。因为我们统计出来的这些粉丝人气值度的结果,不光可以作为每个直播间人气值榜的排名,也应该可以作为以后平台主播年度排名等其他业务场景的数据来源。如果想要兼顾这些查询场景,使用HBase就会对Rowkey产生大量的侵入,而Elasticsearch可以根据任意字段快速查询,就比较有优势。 另外,从官方文档中可以查到,对于HBase,Flink只提供了Table API&SQL 模块的connector支持,而DataStream/DataSet API中没有提供支持,而ElasticSearch则支持更为全面。当然,这跟HBase的具体场景是有关联的,但是也可以从另一个角度认为,使用ElasticSearch的可行性更高。

这样,就初步确定了 kafka-> Flink -> ElasticSearch 这样的大致数据流程。这
也是在实际开发中非常典型的一个组合方式。后续就可以着手搭建kafka集群以及ElasticSearch+Kibana的集群了。搭建的过程就略过了。

确定数据的基础结构
这一步主要是确定入口数据和出口数据的结构。只要这两个数据结构确定了,那
么应用程序模块和大数据计算模块就可以分开进行开发了。是双方主要的解耦方
式。

在数据入口处,可以定义这样的简化的数据结构:

public static class GiftRecord{
private String hostId; //主播ID
private String fansId; //粉丝ID
private long giftCount; //礼物数量
private String giftTime; //送礼物时间。时间格式 yyyy-MM-DD HH:mm:SS
.....
}

在kafka中,确定使用gift作为Topic,MQ的消息格式为 #{hostId},#{fansId},#{giftCount},#{giftTime} 这样的字符串。

在数据出口处,可以定义ES中这样简化的索引结构:

-- 贡献日榜索引
PUT daygiftanalyze
{
"mappings":{
	"properties": {
		"windowEnd":{
			"type": "long"
			},
		"hostId": {
			"type": "keyword"
		},
		"fansId": {
			"type": "keyword"
		},
		"giftCount":{
			"type": "long"
			}
		}
	}
}

这样,一个简单的设计方案就形成了。应用程序只需要在粉丝发送礼物时往kafka中同步一条消息记录,然后从ES中查询主播的人气值日榜和人气值周榜数据即可。而我们也可以模拟数据格式进行开发了。

3、应用实现

人气值日榜:
基础数据结构:

public static class GiftRecord{
	private String hostId; //主播ID
	private String fansId; //粉丝ID
	private long giftCount; //礼物数量
	private String giftTime; //送礼物时间。时间格式 yyyy-MM-DD HH:mm:SS
	.....
}

在kafka中,确定使用gift作为Topic,MQ的消息格式为 #{hostId},#{fansId},#{giftCount},#{giftTime} 这样的字符串。

ES索引:

PUT daygiftanalyze
{
  "mappings": {
    "properties": {
      "windowEnd": {
        "type": "long"
      },
      "hostId": {
        "type": "keyword"
      },
      "fansId": {
        "type": "keyword"
      },
      "giftCount": {
        "type": "long"
      }
    }
  }
}

然后运行Flink程序,com.flink.project.flink.DayGiftAna,从kafka中读取数
据。测试数据见giftrecord.txt。计算程序会及时将十分钟内的粉丝礼物统计都存入到ES当中。

giftrecord.txt如下:

1001,3001,100,2021-09-15 15:15:10
1001,3002,321,2021-09-15 15:17:14
1001,3003,234,2021-09-15 15:16:24
1001,3004,15,2021-09-15 15:17:13
1001,3005,264,2021-09-15 15:18:14
1001,3006,678,2021-09-15 15:17:54
1001,3007,123,2021-09-15 15:19:22
1001,3008,422,2021-09-15 15:18:37
1001,3009,566,2021-09-15 15:22:43
1001,3001,76,2021-09-15 15:21:28
1001,3001,88,2021-09-15 15:26:28
1001,3007,168,2021-09-15 15:32:29
1001,3002,157,2021-09-15 15:28:56
1001,3009,567,2021-09-15 15:27:32
1001,3004,145,2021-09-15 15:30:26
1001,3003,1656,2021-09-15 15:31:19
1001,3005,543,2021-09-15 15:36:49
1001,3001,864,2021-09-15 15:38:26
1001,3001,548,2021-09-15 15:45:10
1001,3007,359,2021-09-15 15:52:39
1001,3008,394,2021-09-15 15:59:48

com.flink.project.flink.DayGiftAna,如下:


import com.roy.flink.project.fansgift.FansGiftResult;
import com.roy.flink.project.fansgift.GiftRecord;
import org.apache.commons.lang.SystemUtils;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichAggregateFunction;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;
import org.apache.flink.util.Collector;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.time.Duration;
import java.util.*;

import static org.apache.flink.util.Preconditions.checkArgument;
import static org.apache.flink.util.Preconditions.checkNotNull;

/**

 * @desc 贡献日榜计算程序
 */
public class DayGiftAna {

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.getConfig().setAutoWatermarkInterval(1000L); //BoundedOutOfOrdernessWatermarks定时提交Watermark的间隔
//        env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop01:8020/dayGiftAna"));
        // Checkpoint存储到文件
        if(SystemUtils.IS_OS_WINDOWS){
            env.setStateBackend(new FsStateBackend("file:///D:/flink_file"));
        }else{// linux
            env.setStateBackend(new FsStateBackend("file:///home/file_file"));
        }

        //使用Socket测试。
        env.setParallelism(1);
        final DataStreamSource<String> dataStream = env.socketTextStream("10.86.97.206", 7777);

        final SingleOutputStreamOperator<FansGiftResult> fansGiftResult = dataStream.map((MapFunction<String, GiftRecord>) value -> {

            final String[] valueSplit = value.split(",");
            //SimpleDateFormat 多线程不安全。
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            final long giftTime = sdf.parse(valueSplit[3]).getTime();
            return new GiftRecord(valueSplit[0], valueSplit[1], Integer.parseInt(valueSplit[2]), giftTime);

        }).assignTimestampsAndWatermarks(WatermarkStrategy
                .<GiftRecord>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                .withTimestampAssigner((SerializableTimestampAssigner<GiftRecord>) (element, recordTimestamp) -> element.getGiftTime()))
//          .keyBy((KeySelector<GiftRecord, String>) value -> value.getHostId() + "_" + value.getFansId()) //按照HostId_FansId分组
            .keyBy((KeySelector<GiftRecord, String>) value -> value.getHostId()) //按照HostId分组
            .window(TumblingEventTimeWindows.of(Time.seconds(10)))
//                .allowedLateness(Time.seconds(2))
            .aggregate(new WinodwGiftRecordAgg(), new AllWindowGiftRecordAgg());
        //打印结果测试
        fansGiftResult.print("fansGiftResult");

        env.execute("DayGiftAna");
    }

    //在每个子任务中将窗口期内的礼物进行累计合并
    //增加状态后端。
    private static class WinodwGiftRecordAgg implements AggregateFunction<GiftRecord, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(GiftRecord value, Long accumulator) {
            Long res = accumulator + value.getGiftCount();
            return res;
        }

        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }

        @Override
        public Long merge(Long a, Long b) {
            return a + b;
        }
    }

    //对窗口期内的所有子任务进行窗口聚合操作。
    private static class AllWindowGiftRecordAgg extends RichWindowFunction<Long, FansGiftResult, String, TimeWindow> {

        ValueState<FansGiftResult> state;

        @Override
        public void apply(String s, TimeWindow window, java.lang.Iterable<Long> input, Collector<FansGiftResult> out) throws Exception {
            final String[] splitKey = s.split("_");
            String hostId = splitKey[0];
            String fansId ="";
            if(splitKey.length>1){
                fansId=splitKey[1];
            }
            final Long giftCount = input.iterator().next();
            final long windowEnd = window.getEnd();
            final FansGiftResult fansGiftResult = new FansGiftResult(hostId, fansId, giftCount, windowEnd);
            out.collect(fansGiftResult);
            state.update(fansGiftResult);
        }

        @Override
        public void open(Configuration parameters) throws Exception {
            final ValueStateDescriptor<FansGiftResult> stateDescriptor = new ValueStateDescriptor<>("WinodwGiftRecordAgg", TypeInformation.of(new TypeHint<FansGiftResult>() {
            }));
            state = this.getRuntimeContext().getState(stateDescriptor);
        }
    }
}

FansGiftResult,代码如下:

public class FansGiftResult {

    private String hostId;
    private String fansId;
    private long giftCount;
    private long windowEnd;

    public FansGiftResult() {
    }

    public FansGiftResult(String hostId, String fansId, long giftCount, long windowEnd) {
        this.hostId = hostId;
        this.fansId = fansId;
        this.giftCount = giftCount;
        this.windowEnd = windowEnd;
    }

    @Override
    public String toString() {
        if(fansId!=null && fansId.length()>0){
            return "FansGiftResult{" +
                    "hostId='" + hostId + '\'' +
                    ", fansId='" + fansId + '\'' +
                    ", giftCount=" + giftCount +
                    ", windowEnd=" + windowEnd +
                    '}';
        }else{
            return "FansGiftResult{" +
                    "hostId='" + hostId + '\'' +
                    ", giftCount=" + giftCount +
                    ", windowEnd=" + windowEnd +
                    '}';
        }
    }

    public String getHostId() {
        return hostId;
    }

    public void setHostId(String hostId) {
        this.hostId = hostId;
    }

    public String getFansId() {
        return fansId;
    }

    public void setFansId(String fansId) {
        this.fansId = fansId;
    }

    public long getGiftCount() {
        return giftCount;
    }

    public void setGiftCount(long giftCount) {
        this.giftCount = giftCount;
    }

    public long getWindowEnd() {
        return windowEnd;
    }

    public void setWindowEnd(long windowEnd) {
        this.windowEnd = windowEnd;
    }
}

GiftRecord,代码如下:


public class GiftRecord {

    private String hostId; //主播ID
    private String fansId; //粉丝ID
    private int giftCount; //礼物数量
    private long giftTime; //送礼物时间。原始时间格式 yyyy-MM-DD HH:mm:ss,sss

    public GiftRecord() {
    }

    public GiftRecord(String hostId, String fansId, int giftCount, long giftTime) {
        this.hostId = hostId;
        this.fansId = fansId;
        this.giftCount = giftCount;
        this.giftTime = giftTime;
    }

    public String getHostId() {
        return hostId;
    }

    public void setHostId(String hostId) {
        this.hostId = hostId;
    }

    public String getFansId() {
        return fansId;
    }

    public void setFansId(String fansId) {
        this.fansId = fansId;
    }

    public int getGiftCount() {
        return giftCount;
    }

    public void setGiftCount(int giftCount) {
        this.giftCount = giftCount;
    }

    public long getGiftTime() {
        return giftTime;
    }

    public void setGiftTime(long giftTime) {
        this.giftTime = giftTime;
    }

    @Override
    public String toString() {
        return "GiftRecord{" +
                "hostId='" + hostId + '\'' +
                ", fansId='" + fansId + '\'' +
                ", giftCount=" + giftCount +
                ", giftTime='" + giftTime + '\'' +
                '}';
    }
}

ES查询语句:

GET daygiftanalyze/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "windowEnd": {
              "gte": 1631635200000,
              "lte": 1631721600000
            }
          }
        },
        {
          "match": {
            "hostId": "1001"
          }
        }
      ]
    }
  },
  "aggs": {
    "groupByFans": {
      "terms": {
        "field": "fansId",
        "size": 3,
        "order": {
          "giftCount": "desc"
        }
      },
      "aggs": {
        "giftCount": {
          "sum": {
            "field": "giftCount"
          }
        }
      }
    }
  }
}

ES中的查询结果:
在这里插入图片描述
直播应用就可以根据这个查询结果组织客户端查询代码,最终实现日榜排名的功能。

4、实现效果分析

具体的计算方案参见示例代码,这里就不多做分析了。这里只分析一下在实现过程中需要注意的几个重要的问题:

  • 时间语义分析
    对于网络直播这样的场景,从下午六点到第二天早上六点才是一天的高峰期,所以,在进行统计时,将每一天的统计时间定义为从早上六点到第二天早上六点,这样就能尽量保持高峰期的完整性。很多跟娱乐相关的场景,比如网络游戏,也大都是以这样的范围来定义一天,而不是传统意义上的从0点到24点。

  • 并行度优化
    可以直接使用Flink的开窗机制,待一周的数据收集完整了之后,一次性向ES中输出统计结果,这种场景下要注意累计器的持久化,以及计算程序出错后的重启恢复机制。

  • 后续改进方式
    状态后端、而对于人气值日榜的计算,就不能等一天的数据收集齐了再计算了。这时是有两种解决方案,一种是完全的流处理方式。也就是每来一条数据就往ES中更新结果。另一中方式是采用小批量的流处理方式。以五分钟为单位,将数据拆分成一个一个小窗
    口来进行处理。显然后一种方式对数据处理的压力会比较小一点。虽然数据量会更
    多,但是ES的存储以及快速查询能力可以比较好的弥补数据量的问题。也因此,在
    设计ES数据机构时,将人气值日榜的文档结构设计成了一个一个的小范围。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1438789.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JS逆向八】逆向某企查网站的headers参数,并模拟生成 仅供学习

逆向日期&#xff1a;2024.02.07 使用工具&#xff1a;Node.js 加密方法&#xff1a;未知 / 标准库Hmac-SHA512 文章全程已做去敏处理&#xff01;&#xff01;&#xff01; 【需要做的可联系我】 可使用AES进行解密处理&#xff08;直接解密即可&#xff09;&#xff1a;AES加…

2月7日作业

分别通过select、多进程、多线程实现一个并发服务器 #include <myhd.h> #define IP "192.168.250.100" #define PORT 8888 int deal_cli_msg(int newfd,struct sockaddr_in cin) {char buf[128] "";while(1){bzero(buf,sizeof(buf));int res recv…

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言 环境介绍&#xff1a; 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx&#xff0c;再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1&#xff0c;并且图像乱框问题…

(力扣)1314.矩阵区域和

给你一个 m x n 的矩阵 mat 和一个整数 k &#xff0c;请你返回一个矩阵 answer &#xff0c;其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和&#xff1a; i - k < r < i k, j - k < c < j k 且(r, c) 在矩阵内。 示例 1&#xff1a; 输入&a…

春节假期如何高效管理Shopee虾皮本土店?技巧都给你整理好了!

EasyBoss ERP 对于中国人最重要的春节即将来临&#xff0c;但对于运营Shopee、TikTok Shop等平台的卖家而言&#xff0c;他们的客户可不会过春节。为了不影响店铺的业绩&#xff0c;很多卖家在春节期间都还是照常运营店铺&#xff0c;但又不想错过和家人团圆的机会怎么办&…

Redis.conf 配置文件解读

1、单位 容量单位不区分大小写&#xff0c;G和GB没有区别 配置文件 unit单位 对大小写不敏感 2、组合配置 可以使用 include 组合多个配置问题 3、网络配置 bind 127.0.0.1 # 绑定的ip protected-mode yes # 保护模式 port 6379 # 端口设置4、通用 GENERAL daemoniz…

STM32 硬件随机数发生器(RNG)

STM32 硬件随机数发生器 文章目录 STM32 硬件随机数发生器前言第1章 随机数发生器简介1.1 RNG主要特性1.2.RNG应用 第2章 RNG原理框图第3章 RNG相关寄存器3.1 RNG 控制寄存器 (RNG_CR)3.2 RNG 状态寄存器 (RNG_SR)3.3 RNG 数据寄存器 (RNG_DR) 第3章 RNG代码部分第4章 STM32F1 …

洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解)

题目描述 一个如下的 6666 的跳棋棋盘&#xff0c;有六个棋子被放置在棋盘上&#xff0c;使得每行、每列有且只有一个&#xff0c;每条对角线&#xff08;包括两条主对角线的所有平行线&#xff09;上至多有一个棋子。 上面的布局可以用序列 2 4 6 1 3 52 4 6 1 3 5 来描述&am…

wsl 安装minikube

Minikube是一种轻量化的Kubernetes集群&#xff0c;专为开发者和学习者设计&#xff0c;以便他们能够更好地学习和体验Kubernetes的功能。它利用个人PC的虚拟化环境&#xff0c;实现了Kubernetes的快速构建和启动。目前&#xff0c;Minikube已经支持在macOS、Linux和Windows平台…

浅析Linux内核模块自加载机制

文章目录 概述Linux内核模块管理内核模块存放目录modules系列文件 阻止模块启动时加载 systemd-module-load.service配置文件内核启动参数 udev动态加载机制udev工作流程udev配置示例&#xff1a;网卡重命名 相关参考 概述 模块自加载用于配置系统在启动时自动加载所需要的模块…

ctfshow-web11~20-WP

web11 根据提示,查询对ctfshow域名进行dns查询,查看TXT记录 阿里云查询链接:阿里云网站运维检测平台 获取flag成功 web12 根据题目提示,我们访问robots.txt,获取到后台地址 然后我们访问一下后台

算法效率的度量-时间空间复杂度

常对幂指阶 1.时间复杂度 事前预估 算法 时间开销 T(n) 与 问题规模 n 的关系&#xff08; T 表示 “ time ”&#xff09; 一般默认问题规模为n。 1.单循环 2.嵌套两层循环都为n 3.单层循环指数递增型 4.搜索型 链接 &#xff1a;第七章查找算法&#xff01;&#xff01…

C语言数组与扫雷游戏实现(详解)

扫雷游戏的功能说明 使⽤控制台实现经典的扫雷游戏游戏可以通过菜单实现继续玩或者退出游戏扫雷的棋盘是9*9的格子默认随机布置10个雷可以排查雷 ◦ 如果位置不是雷,就显示周围有几个雷 ◦ 如果位置是雷,就炸死游戏结束 ◦ 把除10个雷之外的所有雷都找出来,排雷成功,游戏结…

PMP备考的三个阶段及学习方法分享

PMP证书是项目管理必备的关键技能证书&#xff0c;是具备进行项目管理的重要技能体现。无论升职加薪&#xff0c;还是从事项目管理工作&#xff0c;都非常重要。 个人主要从事产品开发工作&#xff0c;开始逐渐承担一些项目经理角色&#xff0c;但目前项目管理知识薄弱&#x…

政安晨:示例演绎Python语言外部库的使用

这篇咱们示例演绎Python的一个重要能力&#xff1a;导入、运算符重载和进入外部库世界的生存技巧。 在咱们这一篇中&#xff0c;你将学习Python中的导入&#xff0c;获取使用不熟悉的库&#xff08;以及它们返回的对象&#xff09;的一些技巧&#xff0c;并深入了解运算符重载…

0206作业

TCP&#xff08;传输控制协议&#xff09;和 UDP&#xff08;用户数据报协议&#xff09;是两种常用的网络传输协议。它们之间的主要区别在于&#xff1a; 可靠性&#xff1a;TCP 是一种可靠的传输协议&#xff0c;它提供了数据传输的确认、重传和排序功能。如果数据在传输过程…

24.云原生ArgoCD高级之钩子

云原生专栏大纲 文章目录 Argo CD钩子如何定义钩子钩子删除策略 Argo CD钩子 Argo CD 是一个用于部署和管理 Kubernetes 应用程序的工具&#xff0c;它提供了一种声明式的方式来定义和自动化应用程序的部署过程。Argo CD 钩子&#xff08;Hooks&#xff09;是一种机制&#x…

Damn Small Linux 停更16年后,2024 回归更新

Damn Small Linux(DSL) 发行版释出了最新的 2024 版本&#xff0c;并重新定义了什么叫“Damn Small”。 DSL 诞生于 2005 年&#xff0c;原本是尝试提供一个 50MB 大小的 LiveCD&#xff0c;2008 年开发停滞。 2024 年原作者 John Andrews 宣布 DSL 复活&#xff0c;在几乎所…

springboot基础案例(二)

文章目录 前言一.需求分析: 分析这个项目含有哪些功能模块二.库表设计(概要设计): 1.分析系统有哪些表 2.分析表与表关系 3.确定表中字段(显性字段 隐性字段(业务字段))2.1 创建一个库: ems-thymeleaf2.2 创建 2张表三.编码(环境搭建)1.创建一个springboot项目 项目名字: ems-t…

【IDEA】反编译Jar包

反编译步骤 使用IDEA安装decompiler插件 找到decompiler插件文件夹所在位置&#xff08;IDEA安装路径/plugins/java-decompiler/lib &#xff09;&#xff0c;将需要反编译的jar包放到decompiler插件文件夹下&#xff0c;并创建一个空的文件夹&#xff0c;用来存放反编译后的…