tee漏洞学习-翻译-2:探索 Qualcomm TrustZone的实现

news2024/10/7 1:51:32

原文:http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html

获取 TrustZone image

从两个不同的位置提取image

  • 从手机设备本身
  • 从google factory image

已经root的Nexus 5设备,image存储在eMMC芯片上,并且eMMC芯片的分区在/dev/block/platform/msm_sdcc.1下,可以通过dd命令进行复制 。

此外,在/dev/block/platform/msm_sdcc.1/by-name分区下,包含tztzb这些有意义的名称:
在这里插入图片描述

tz(TrustZone 的缩写),另一个名为tzb,作为tz映像的备份映像,并且与tz映像相同。

直接从手机内部提取,可能存在两个问题:

  • 尽管 TrustZone 映像存储在 eMMC 芯片上,但“正常世界”很容易无法访问它(通过要求设置系统总线上的 AxPROT 位),或者它的多个部分可能会丢失。
  • 拉取整个分区的数据不会显示有关image真实(逻辑)边界的信息,因此需要一些额外的工作来确定image实际结束的位置。 (实际上,由于“tz”image是 ELF 二进制文件,因此它的大小包含在 ELF 标头中)。

因此,从设备中提取了一个image后,让我们看一下google factory image。

Nexus 5 的出厂镜像均可从 Google 下载。出厂映像包含一个包含所有默认映像的 ZIP,另外还包含引导加载程序映像。KTU84P

下载工厂映像并查找与 TrustZone 相关的字符串后,很快就发现bootloader包含所需的代码。

然而,这里仍然有一个小问题需要解决 - 引导加载程序image的格式未知。无论如何,使用十六进制编辑器打开该文件并猜测其结构实际上非常简单:
在这里插入图片描述

引导加载程序文件具有以下结构:

  • magic值(“BOOTLDR!”)- 8 个字节
  • image数量 - 4 字节
  • 从文件开头到image数据开头的偏移量 - 4 个字节
  • image中包含的数据的总大小 - 4 字节
  • 一个数组,其中包含与上面的“image数量”字段匹配的多个条目。数组中的每个条目都有两个字段:
    • image名称 - 64 字节(零填充)
    • image长度 - 4 字节

正如您在上图中看到的,引导加载程序映像包含一个名为“tz”的映像,这就是我们要查找的映像。为了解压该文件,我编写了一个小型 python 脚本(可在此处获取),该脚本接收引导加载程序映像并解压其中包含的所有文件。

提取图像并将其与之前从设备中提取的image进行比较后,我验证它们确实是相同的。所以我想这意味着我们现在可以继续检查 TrustZone image。

import sys, struct, os

def main():

	#Reading the commandline arguments
	if len(sys.argv) != 3:
		print "USAGE: %s <BOOTLOADER_IMAGE> <OUTPUT_DIR>" % sys.argv[0]
		return
	bootloader_path = sys.argv[1]
	output_path = sys.argv[2]

	#Verifying the magic
	bootloader_file = open(bootloader_path, 'rb')
	magic = bootloader_file.read(8)
	if magic != "BOOTLDR!":
		print "[-] Read incorrect magic: %s" % magic.encode("hex")
		return
	print "[+] Read correct magic"

	#Reading in the metadata block
	image_count,data_start_addr,total_size = struct.unpack("<III", bootloader_file.read(12))
	print "[+] Found %d images, starting at %08X, total size: %08X" % (image_count, data_start_addr, total_size)
	image_metadata = []
	for i in range(0, image_count):
		image_name = bootloader_file.read(64).strip('\x00')
		image_len = struct.unpack("<I", bootloader_file.read(4))[0]
		image_metadata.append((image_name, image_len))
	print "[+] Images: %s" % str(image_metadata)

	#Dumping each image
	bootloader_file.seek(data_start_addr, 0)
	for image_name, image_len in image_metadata:
		print "[+] Dumping %s" % image_name
		data = bootloader_file.read(image_len)
		open(os.path.join(output_path, image_name), 'wb').write(data)
	print "[+] Done"

if __name__ == "__main__":
	main()

修复 TrustZone 映像

首先,检查该文件发现它实际上是一个 ELF 文件,这是一个好消息!这意味着内存段及其映射地址应该可供我们使用。

用 IDA Pro 打开文件并让自动分析运行一段时间后,我想开始逆向文件。然而,令人惊讶的是,似乎有很多分支指向未映射的地址(或者更确切地说,未包含在“tz”二进制文件中的地址)。

仔细一看,似乎所有指向无效地址的绝对分支都在文件的第一个代码段内,并且它们指向未映射的高地址。此外,第一个代码段的地址没有绝对分支。

这看起来有点可疑…那么我们看一下 ELF 文件的结构怎么样?执行 readelf 会显示以下内容:
在这里插入图片描述

有一个 NULL 段映射到更高的地址,它实际上对应于无效绝对分支指向的地址范围!

不管怎样,我做了一个相当安全的猜测,那就是第一个代码段实际上映射到了错误的地址,实际上应该映射到更高的地址 - 0xFE840000。很自然地,我想使用 IDA 的 rebase 功能对段进行 rebase,但是你瞧!这会导致 IDA 严重崩溃:
在这里插入图片描述

在这里插入图片描述
0xFC58C48地址太低了,不在加载地址范围之内)

我实际上不确定这是否是高通的反逆向功能,或者 NULL 段是否只是其内部构建过程的结果,但这可以通过手动修复 ELF 文件轻松绕过。所需要做的就是将 NULL 段移动到未使用的地址(因为 IDA 无论如何都会忽略它)Type 类型为NULL,没啥用,所以会被忽略,除非专门为tz编写了加载器,并将第一个代码段从错误的地址 (0xFC86000) 移动到正确的地址 (0xFE840000)这个需要自己用IDA打开提取出的tz,稍微看看就能理解,如下所示:
在这里插入图片描述

现在,在 IDA 中加载镜像后,所有绝对分支都有效了!这意味着我们可以继续分析image。

分析 TrustZone image

首先,应该指出的是,TrustZone 映像是一个相当大的 (285.5 KB) 二进制文件,包含相当少量的字符串,并且没有公共文档。此外,TrustZone 系统由完整的内核组成,具有执行应用程序等功能。所以…目前还不清楚我们应该从哪里开始,因为逆向整个二进制文件可能需要太长时间。

由于我们希望从应用程序处理器攻击 TrustZone 内核,因此最大的攻击面可能是安全监视器调用,这些调用使“正常世界”能够与“安全世界”进行交互。

当然,应该指出的是,我们还可以通过其他方式与 TrustZone 进行交互,例如共享内存甚至中断处理,但由于这些攻击面要小得多,因此最好从分析 SMC 调用。

那么我们如何找到 TrustZone 内核处理 SMC 调用的位置呢?首先,我们回想一下,在执行 SMC 调用时,与处理 SVC 调用(即“正常世界”中的常规系统调用)类似,“安全世界”必须注册向量的地址。当遇到这样的指令时,处理器将跳转。

“安全世界”的等效项是MVBAR(监视器向量基地址寄存器),它提供向量的地址,该向量包含“安全世界”中处理器处理的不同事件的处理函数。

正向的MRC/MSR

MRS x0, TTBR0_EL1 // Move TTBR0_EL1 into x0
MSR TTBR0_EL1, x0 // Move x0 into TTBR0_EL1

每个系统寄存器都可看做是一个标号 正向的源码中可以写寄存器名称,编译器认识,但逆向的IDA中只能看到寄存器标号

使用任意一个插件,IDA将会识别系统寄存器
https://github.com/gdelugre/ida-arm-system-highlight
https://github.com/NeatMonster/AMIE

访问 MVBAR 是使用 MRC/MCR 操作码和以下操作数完成的:
在这里插入图片描述

因此,这意味着我们可以简单地在 TrustZone 映像中搜索具有以下操作数的 MCR 操作码,并且我们应该能够找到“监视器向量”。事实上,在 IDA 中搜索操作码会返回以下匹配项:
在这里插入图片描述

正如您所看到的,“开始”符号的地址(顺便说一下,这是唯一导出的符号)被加载到 MVBAR 中
根据ARM文档,Monitor Vector具有以下结构:
在这里插入图片描述

这意味着,如果我们查看前面提到的“开始”符号,我们可以将以下名称分配给该表中的地址:
下图中解析的有问题,Monitor Vector的首地址是0xFE810000
在这里插入图片描述
现在,我们可以分析SMC_VECTOR_HANDLER函数。
实际上,这个函数负责很多任务;

  • 首先,它将所有状态寄存器和返回地址保存在预定义的地址中(在“安全世界”中),
  • 然后,它将堆栈切换到预分配区域(也在“安全世界”中)。
  • 最后,在进行必要的准备之后,它会继续分析用户请求的操作并据此进行操作。

由于发出 SMC 的代码存在于 Linux 内核的高通 MSM 分支中,因此我们可以看一下“正常世界”可以向“安全世界”发出的命令格式。

SMC and SCM(SCM没啥意义,就是高通自己给自己的SMC调用取了个名字)

令人困惑的是,高通选择将“正常世界”通过 SMC 操作码与“安全世界”交互的通道命名为 SCM(安全通道管理器)

无论如何,正如我在上一篇博客文章中提到的,“qseecom”驱动程序用于通过 SCM 与“安全世界”进行通信。

Qualcomm在相关源文件中提供的文档相当丰富,足以很好地掌握SCM命令的格式。

简而言之,SCM 命令分为两类:

  • 常规 SCM call - 参数很的调用方式,通过共享内存进行传参
  • Atomic SCM call - 轻量的调用方式,通过寄存器传参

常规 SCM call - 当需要将信息从“正常世界”传递到“安全世界”时使用这些call,这是为 SCM call提供服务所必需的。
内核填充以下结构:
在这里插入图片描述

TrustZone 内核在为 SCM 调用提供服务后,将响应写回“scm_response”结构:
在这里插入图片描述
为了分配和填充这些结构,内核可以调用包装函数“scm_call”,该函数接收

  • 指向内核空间缓冲区的指针,其中包含要发送的数据、数据应返回的位置
  • 以及最重要的服务标识符和命令标识符。

每个 SCM 调用都有一个类别,这意味着哪个 TrustZone 内核子系统负责处理该调用。这由服务标识符表示。命令标识符是指定在给定服务内请求哪个命令的代码。

在“scm_call”函数分配并填充“scm_command”和“scm_response”缓冲区后,它调用内部“__scm_call”函数刷新所有缓存(内部和外部缓存),并调用“smc”函数。

最后一个函数实际上执行 SMC 操作码,将控制权转移到 TrustZone 内核,如下所示:
在这里插入图片描述
请注意

  • R0 设置为 1
  • R1 设置为指向本地内核堆栈地址,该地址用作该调用的“上下文 ID”
  • R2 设置为指向分配的“scm_command”结构的物理地址。

R0 中设置的这个“神奇”值表明这是一个常规的 SCM 调用,使用“scm_command”结构。然而,对于某些需要较少数据的命令,无缘无故地分配所有这些数据结构将是相当浪费的。为了解决这个问题,引入了另一种形式的 SCM 调用。

Atomic SCM call - 对于参数数量相当低(最多四个参数)的调用,存在另一种请求 SCM 调用的方法。

有四个包装函数“scm_call_atomic_[1-4]”,它们对应于请求的参数数量。可以调用这些函数,以便使用给定的服务和命令 ID 以及给定的参数直接发出 SCM 调用的 SMC。

这是“scm_call_atomic1”函数的代码:
在这里插入图片描述

其中 SCM_ATOMIC 定义为:
在这里插入图片描述
请注意,服务 ID 和命令 ID 以及调用中的参数数量(在本例中为 1)都被编码到 R0 中。这取代了之前用于常规 SCM 调用的“神奇”值 1。
R0 中的这个不同值向 TrustZone 内核表明以下 SCM 调用是原子调用,这意味着参数将使用 R2-R5 传递(而不使用 R2 指向的结构)。

分析 SCM 调用

现在我们了解了 SCM 调用的工作原理,并且已经在 TrustZone 内核中找到了用于处理这些 SCM 调用的处理函数,我们可以开始反汇编 SCM 调用以尝试查找其中之一的漏洞。

我将跳过对 SCM 处理函数的大部分分析,因为其中大部分是用户输入的样板处理等。但是,在将堆栈切换到 TrustZone 区域并保存执行调用的原始寄存器之后,处理函数继续处理服务ID和命令ID,以便查看应该调用哪个内部处理函数。

为了轻松映射服务和命令 ID 以及相关处理函数,静态列表被编译到 TrustZone 映像的数据段中,并由 SCM 处理函数引用。以下是列表中的一小段内容:
在这里插入图片描述
如您所见,该列表具有以下结构:

  • 指向包含 SCM 函数名称的字符串的指针
  • call 类型
  • 指向处理函数的指针
  • 参数数量
  • 每个参数的大小(每个参数一个 DWORD)
  • 服务 ID 和命令 ID 连接成一个 DWORD - 例如,上面的“tz_blow_sw_fuse”函数的类型为 0x2002,这意味着它属于服务 ID 0x20,其命令 ID 为 0x02。

现在剩下的就是开始反汇编这些函数,并希望找到可利用的错误。

The Bug!

因此,在研究了所有上述 SMC 调用(全部 69 个)之后,我终于得到了以下函数:
在这里插入图片描述
通常,当使用常规 SCM 调用机制调用 SCM 命令时,R0 将包含结果地址,该地址指向由内核分配的“scm_response”缓冲区,但也由 TrustZone 内核验证以确保它实际上是“允许”范围内的物理地址 - 即对应于 Linux 内核内存的物理地址,而不是 TrustZone 二进制文件中的内存位置。

此检查是使用内部函数执行的,我将在下一篇博客文章中更详细地介绍该函数。


但是如果我们使用原子 SCM 调用来执行函数会发生什么?在这种情况下,使用的结果地址是原子调用传递的第一个参数。
在这里插入图片描述

现在 - 你能看到上面函数中的错误吗?

与其他 SCM 处理函数相反,该函数没有验证 R0(“结果地址”)中的值,因此如果我们传入:

  • R1为非零值(为了通过第一个分支)(原文有问题,是R0为非0
    在这里插入图片描述

  • 第四个参数(在上面的 var_1C 处传入)非零

    • LDR R0,[SP, #x28+var_1C]
    • CBZ R0, loc_FE84B372
    • 进入最左侧的分支
  • R0 为任何物理地址,包括 TrustZone 地址空间范围内的地址

    • MOVS R6, R0
    • MOVS R1, #0
    • STR R1, [R6]

该函数将到达上面函数中最左边的分支,并在 R0 中包含的地址写入一个零 DWORD

What’s next? 下一步是什么?

在下一篇博文中,我将分享针对上述漏洞的详细(而且相当复杂!)利用,该漏洞可以在 TrustZone 内核中实现完整的代码执行。我还将发布完整的漏洞利用代码,敬请期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1438088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

爬虫工作量由小到大的思维转变---<第四十六章 Scrapyd 用gerapy管理多台机器爬虫(2)>

前言: 继续上一篇爬虫工作量由小到大的思维转变---&#xff1c;第四十四章 Scrapyd 用gerapy管理多台机器爬虫&#xff1e;-CSDN博客 要想在电脑B上,部署爬虫应该做哪些? 正文: 前期准备: 1.已经成功在电脑A上启动了gerapy.并能够成功连接电脑A的ip; 原理: 首先,我需要…

图数据库 之 Neo4j - 环境搭建(2)

运行环境&#xff1a; centos7 Docker version 18.09.6 下载镜像 docker search neo4j docker pull neo4j 创建 neo4j 用户 # 创建 neo4j 用户 # -M 不创建用户的主目录 sudo useradd -M neo4j # usermod 用于修改用户属性命令 # -L 锁定用户&#xff0c;用户无法登录系统 user…

C++中的闭包

在编程语言中&#xff0c;闭包(closure)&#xff0c;又称为词法闭包(lexical closure)或函数闭包(function closure)&#xff0c;是一种在具有一流函数的语言中(a language with first-class functions)实现词法作用域名称绑定的技术。从操作上来说&#xff0c;闭包是一个将函数…

HiveSQL——借助聚合函数与case when行转列

一、条件函数 if 条件函数 if函数是最常用到的条件函数&#xff0c;其写法是if(xn,a,b), xn代表判断条件&#xff0c;如果xn时&#xff0c;那么结果返回a ,否则返回b。 selectif(age < 25 or age is null, 25岁以下, 25岁以上) as age_cnt,count(1) as number from table…

C语言第二十弹---指针(四)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、字符指针变量 2、数组指针变量 2.1、数组指针变量是什么&#xff1f; 2.2、数组指针变量怎么初始化 3、⼆维数组传参的本质 4、函数指针变量 4.1…

spring boot(2.4.x之前版本)和spring cloud项目中自动装配的监听执行顺序

目录 扫描 org.springframework.context.ApplicationListener 指定的类 内置的监听 spring boot 中的监听 spring boot autoconfigure 中的监听 spring boot context 中的监听 将加载的监听进行排序 spring boot 中的监听 spring boot context 中的监听 监听执行 监听…

Apache Paimon 文件操作

本文旨在澄清不同文件操作对文件的影响。 本页面提供具体示例和实用技巧&#xff0c;以有效地管理这些操作。此外&#xff0c;通过对提交&#xff08;commit&#xff09;和压实&#xff08;compact&#xff09;等操作的深入探讨&#xff0c;我们旨在提供有关文件创建和更新的见…

006集——where语句进行属性筛选——arcgis

在arcgis中&#xff0c; dBASE 文件除了 WHERE 语句以外&#xff0c;不支持 其它 SQL 命令。选择窗口如下&#xff1a; 首先&#xff0c;我们了解下什么是where语句。 WHERE语句是SQL语言中使用频率很高的一种语句。它的作用是从数据库表中选择一些特定的记录行来进行操作。WHE…

第二证券:沪指涨近1%收复2800点,券商等板块拉升,稀土板块爆发

7日早盘&#xff0c;两市股指延续昨日强势&#xff0c;再度拉升。沪指涨近1%克复2800点&#xff0c;深成指、科创50指数大涨约3%&#xff1b;两市半日成交超6000亿元&#xff0c;北向资金净买入超20亿元。 截至午间收盘&#xff0c;沪指涨0.91%报2814.89点&#xff0c;深成指涨…

第1章 认识Flask

学习目标 了解Flask框架&#xff0c;能够说出Flask框架的发展史以及特点 熟悉隔离Python环境的创建方式&#xff0c;能够独立在计算机上创建隔离的Python环境 掌握Flask的安装方式&#xff0c;能够独立在计算机上安装Flask框架 掌握PyCharm配置隔离环境的方式&#xff0c;能…

电脑文件误删除怎么办?8个恢复软件解决电脑磁盘数据可能的误删

您是否刚刚发现您的电脑磁盘数据丢失了&#xff1f;不要绝望&#xff01;无论分区是否损坏、意外格式化或配置错误&#xff0c;存储在其上的文件都不一定会丢失到数字深渊。 我们已经卷起袖子&#xff0c;深入研究电脑分区恢复软件的广阔领域&#xff0c;为您带来一系列最有效…

如何在 emacs 上开始使用 Tree-Sitter (archlinux)

文章目录 如何在emacs上开始使用Tree-Sitter&#xff08;archlinux&#xff09; 如何在emacs上开始使用Tree-Sitter&#xff08;archlinux&#xff09; 在archlinux上使用比windows上不知道要方便多少倍&#xff01; $ sudo pacman -S emacs $ sudo pacman -S tree-sitter这里…

国内首个openEuler师训营圆满结营! 麒麟信安助力培养国产操作系统高质量师资人才

2024年1月22日&#xff0c;全国首个openEuler师训营圆满结营&#xff01;旨在深化产教融合&#xff0c;加速开源教育走进高校&#xff0c;提高师资队伍openEuler专业能力及实践教学水平。 本次师训营由长沙市大数据产业链、长沙市新一代自主安全计算系统产业链指导&#xff0c…

RxJava Subject

目录 AsyncSubjectBehaviorSubjectPublishSubjectReplaySubjectSerializedSubjectUnicastSubject 在Rxjava中&#xff0c; Subject可以同时表示Observer和Observable, 允许从单个源到多个子观察者multiple child Observers。 除了 onSubscribe(io.reactivex.disposables.Dispos…

云计算运维1

1、企业服务器LNMP环境搭建 集群&#xff1a;多台服务器在一起作同样的事 。分布式 &#xff1a;多台服务器在一起作不同的事 。 环境准备&#xff1a; 1、设置静态ip&#xff08;NAT模式网关为.2&#xff09; # cat /etc/sysconfig/network-scripts/ifcfg-ens33 TYPE"E…

【C生万物】C语言分支和循环语句

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ &#x1f64f;小杨水平有…

uniapp /微信小程序 使用map组件实现手绘地图方案

获取地图范围 点图拾取坐标-地图开放平台|腾讯位置服务 获取需要手绘地图左下角和右上角GPS坐标 以北京故宫为例&#xff1a; 截取需要手绘地图进行手绘地图制作 ​​​​​​​​​​​​​​ 素材处理 由于地图素材文件比较大&#xff0c;小程序又限制包大小<2M,无…

51单片机基础:定时器

1.定时器介绍 51单片机通常有两个定时器&#xff1a;定时器 0/1&#xff0c;好一点的可能有定时器3。 在介绍定时器之前我们先科普下几个知识&#xff1a; 1&#xff0c;CPU 时序的有关知识 ①振荡周期&#xff1a;为单片机提供定时信号的振荡源的周期&#xff08;晶振周期或…

RAPTOR:树组织检索的递归抽象处理

RAPTOR: RECURSIVE ABSTRACTIVE PROCESSING FOR TREE-ORGANIZED RETRIEVAL Title&#xff1a;树组织检索的递归抽象处理 https://arxiv.org/pdf/2401.18059.pdf 摘要 检索增强语言模型可以更好的融入长尾问题&#xff0c;但是现有的方法只检索短的连续块&#xff0c;限制了整…

深度测评:ONLYOFFICE 桌面编辑器 v8.0新功能

目录 前言 一、PDF表单处理&#xff1a;提升办公效率 二、RTL&#xff08;从右到左&#xff09;支持&#xff1a;满足不同语言习惯 三、Moodle集成&#xff1a;教育行业的新助力 四、本地界面主题&#xff1a;个性化办公体验 五、性能优化与稳定性提升 六、性能与稳定性…