【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)

news2024/11/18 11:39:31
在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)
项目介绍

YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署 YOLOv5 DET 模型实现物体对象检测。

项目链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API

项目源码链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/tree/master/model_samples/yolov5/yolov5_det_opencvsharp
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/tree/master/model_samples/yolov5/yolov5_det_emgucv

文章目录

    • 3. Yolov5 DET 项目配置(OpenCvSharp版)
      • 3.1 项目创建
      • 3.2 添加项目依赖
      • 3.3 定义预测方法
        • (1) 使用常规方式部署模型
        • (2) 使用模型结构处理处理数据
        • (3) 使用 OpenVINO™ C# API 封装的接口
      • 3.4 预测方法调用
    • 4. Yolov5 DET 项目配置(Emgu.CV 版)
      • 4.1 添加项目依赖
      • 4.2 定义预测方法
    • 5. 项目运行与演示
      • 5.1 项目编译
    • 6. 总结

3. Yolov5 DET 项目配置(OpenCvSharp版)

3.1 项目创建

如果开发者第一次在MacOS系统上使用C#编程语言,可以参考《在MacOS系统上配置OpenVINO™ C# API》文章进行配置。

首先使用dotnet创建一个测试项目,在终端中输入一下指令:

dotnet new console --framework net6.0 --use-program-main -o yolov5-det 

3.2 添加项目依赖

MacOS系统目前主要分为两类,一类是使用intel处理器的X64位的系统,一类是使用M系列芯片的arm64位系统,目前OpenVINO官方针对这两种系统都提供了编译后的系统,所以目前OpenVINO.CSharp.API针对这两种系统都提供了支持。

此处以M系列处理器的MacOS平台为例安装项目依赖,首先是安装OpenVINO™ C# API项目依赖,在命令行中输入以下指令即可:

dotnet add package OpenVINO.CSharp.API
dotnet add package OpenVINO.runtime.macos-arm64
dotnet add package OpenVINO.CSharp.API.Extensions
dotnet add package OpenVINO.CSharp.API.Extensions.OpenCvSharp

关于在MacOS上搭建 OpenVINO™ C# API 开发环境请参考以下文章: 在MacOS上搭建OpenVINO™C#开发环境

接下来安装使用到的图像处理库 OpenCvSharp,在命令行中输入以下指令即可:

dotnet add package OpenCvSharp4
dotnet add package OpenCvSharp4.Extensions
dotnet add package OpenCvSharp4.runtime.osx_arm64 --prerelease

关于在MacOS上搭建 OpenCvSharp 开发环境请参考以下文章: 【OpenCV】在MacOS上使用OpenCvSharp

添加完成项目依赖后,项目的配置文件如下所示:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <RootNamespace>yolov5_det</RootNamespace>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="OpenCvSharp4" Version="4.9.0.20240103" />
    <PackageReference Include="OpenCvSharp4.Extensions" Version="4.9.0.20240103" />
    <PackageReference Include="OpenCvSharp4.runtime.osx_arm64" Version="4.8.1-rc" />
    <PackageReference Include="OpenVINO.CSharp.API" Version="2023.2.0.4" />
    <PackageReference Include="OpenVINO.CSharp.API.Extensions" Version="1.0.1" />
    <PackageReference Include="OpenVINO.CSharp.API.Extensions.OpenCvSharp" Version="1.0.4" />
    <PackageReference Include="OpenVINO.runtime.macos-arm64" Version="2023.3.0.1" />
  </ItemGroup>

</Project>

3.3 定义预测方法

(1) 使用常规方式部署模型

Yolov5 属于比较经典单阶段目标检测模型,其模型输入为640*640的归一化处理后的图像数据,输出为未进行NMS的推理结果,因此在获取推理结果后,需要进行NMS,其实现代码如下所示:

static void yolov5_det(string model_path, string image_path, string device)
{
    // -------- Step 1. Initialize OpenVINO Runtime Core --------
    Core core = new Core();
    // -------- Step 2. Read inference model --------
    Model model = core.read_model(model_path);
    OvExtensions.printf_model_info(model);
    // -------- Step 3. Loading a model to the device --------
    start = DateTime.Now;
    CompiledModel compiled_model = core.compile_model(model, device);
    // -------- Step 4. Create an infer request --------
    InferRequest infer_request = compiled_model.create_infer_request();
    // -------- Step 5. Process input images --------
    Mat image = new Mat(image_path); // Read image by opencvsharp
    int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
    Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
    Rect roi = new Rect(0, 0, image.Cols, image.Rows);
    image.CopyTo(new Mat(max_image, roi));
    float factor = (float)(max_image_length / 640.0);
    // -------- Step 6. Set up input data --------
    Tensor input_tensor = infer_request.get_input_tensor();
    Shape input_shape = input_tensor.get_shape();
    Mat input_mat = CvDnn.BlobFromImage(max_image, 1.0 / 255.0, new OpenCvSharp.Size(input_shape[2], input_shape[3]), 0, true, false);
    float[] input_data = new float[input_shape[1] * input_shape[2] * input_shape[3]];
    Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
    input_tensor.set_data<float>(input_data);
    // -------- Step 7. Do inference synchronously --------
    infer_request.infer();
    // -------- Step 8. Get infer result data --------
    Tensor output_tensor = infer_request.get_output_tensor();
    int output_length = (int)output_tensor.get_size();
    float[] output_data = output_tensor.get_data<float>(output_length);

    // -------- Step 9. Process reault  --------
    Mat result_data = new Mat(25200, 85, MatType.CV_32F, output_data);
    // Storage results list
    List<Rect> position_boxes = new List<Rect>();
    List<int> class_ids = new List<int>();
    List<float> confidences = new List<float>();
    // Preprocessing output results
    for (int i = 0; i < result_data.Rows; i++)
    {
        float confidence = result_data.At<float>(i, 4);
        if (confidence < 0.5)
        {
            continue;
        }
        Mat classes_scores = new Mat(result_data, new Rect(5, i, 80, 1));
        OpenCvSharp.Point max_classId_point, min_classId_point;
        double max_score, min_score;
        // Obtain the maximum value and its position in a set of data
        Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
            out min_classId_point, out max_classId_point);
        // Confidence level between 0 ~ 1
        // Obtain identification box information
        if (max_score > 0.25)
        {
            float cx = result_data.At<float>(i, 0);
            float cy = result_data.At<float>(i, 1);
            float ow = result_data.At<float>(i, 2);
            float oh = result_data.At<float>(i, 3);
            int x = (int)((cx - 0.5 * ow) * factor);
            int y = (int)((cy - 0.5 * oh) * factor);
            int width = (int)(ow * factor);
            int height = (int)(oh * factor);
            Rect box = new Rect();
            box.X = x;
            box.Y = y;
            box.Width = width;
            box.Height = height;

            position_boxes.Add(box);
            class_ids.Add(max_classId_point.X);
            confidences.Add((float)confidence);
        }
    }
    // NMS non maximum suppression
    int[] indexes = new int[position_boxes.Count];
    CvDnn.NMSBoxes(position_boxes, confidences, 0.5f, 0.5f, out indexes);
    for (int i = 0; i < indexes.Length; i++)
    {
        int index = indexes[i];
        Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
        Cv2.Rectangle(image, new OpenCvSharp.Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y + 30),
            new OpenCvSharp.Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
        Cv2.PutText(image, class_ids[index] + "-" + confidences[index].ToString("0.00"),
            new OpenCvSharp.Point(position_boxes[index].X, position_boxes[index].Y + 25),
            HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 0), 2);
    }
    string output_path = Path.Combine(Path.GetDirectoryName(Path.GetFullPath(image_path)),
        Path.GetFileNameWithoutExtension(image_path) + "_result.jpg");
    Cv2.ImWrite(output_path, image);
    Slog.INFO("The result save to " + output_path);
    Cv2.ImShow("Result", image);
    Cv2.WaitKey(0);
}
(2) 使用模型结构处理处理数据

目前 OpenVINO™ 已经支持在模型结构中增加数据的前后处理流程,并且在 OpenVINO™ C# API 中也已经实现了该功能接口,所以在此处演示了如何将模型输入数据处理流程封装到模型中,通过 OpenVINO™ 进行数据处理的加速处理,如下面代码所示:

static void yolov5_det_with_process(string model_path, string image_path, string device)
{
    ······
    // -------- Step 2. Read inference model --------
    start = DateTime.Now;
    Model model = core.read_model(model_path);
    OvExtensions.printf_model_info(model);
    PrePostProcessor processor = new PrePostProcessor(model);
    Tensor input_tensor_pro = new Tensor(new OvType(ElementType.U8), new Shape(1, 640, 640, 3));
    InputInfo input_info = processor.input(0);
    InputTensorInfo input_tensor_info = input_info.tensor();
    input_tensor_info.set_from(input_tensor_pro).set_layout(new Layout("NHWC")).set_color_format(ColorFormat.BGR);
    PreProcessSteps process_steps = input_info.preprocess();
    process_steps.convert_color(ColorFormat.RGB).resize(ResizeAlgorithm.RESIZE_LINEAR)
        .convert_element_type(new OvType(ElementType.F32)).scale(255.0f).convert_layout(new Layout("NCHW"));
    Model new_model = processor.build();
    // -------- Step 3. Loading a model to the device --------
    CompiledModel compiled_model = core.compile_model(new_model, device);
    // -------- Step 4. Create an infer request --------
    InferRequest infer_request = compiled_model.create_infer_request();
    // -------- Step 5. Process input images --------
    Mat image = new Mat(image_path); // Read image by opencvsharp
    int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
    Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
    Rect roi = new Rect(0, 0, image.Cols, image.Rows);
    image.CopyTo(new Mat(max_image, roi));
    Cv2.Resize(max_image, max_image, new OpenCvSharp.Size(640, 640));
    float factor = (float)(max_image_length / 640.0);
    // -------- Step 6. Set up input data --------
    Tensor input_tensor = infer_request.get_input_tensor();
    Shape input_shape = input_tensor.get_shape();
    byte[] input_data = new byte[input_shape[1] * input_shape[2] * input_shape[3]];
    Marshal.Copy(max_image.Ptr(0), input_data, 0, input_data.Length);
    IntPtr destination = input_tensor.data();
    Marshal.Copy(input_data, 0, destination, input_data.Length);
    // -------- Step 7. Do inference synchronously --------
    ······
}

由于目前还没有完全实现所有的 OpenVINO™ 的预处理接口,因此只能实现部分预处理过程封装到模型中,此处主要是做了以下处理:

  • 数据类型转换:byte->float
  • 数据维度转换:NHWC->NCHW
  • 图像色彩空间转换:BGR->RGB
  • 数据归一化处理:[0,1]->[0,255]

因此将一些数据处理流程封装到模型中后,在进行模型推理时,只需要将读取到的图片数据Resize为640*640后,就可以直接将数据加载到模型即可。

(3) 使用 OpenVINO™ C# API 封装的接口

YOLOv5 是当前工业领域十分流行的目标检测模型,因此在封装 OpenVINO™ C# API 时,提供了快速部署 Yolov5 模型的接口,实现代码如下所示:

static void yolov5_det_using_extensions(string model_path, string image_path, string device)
{
    Yolov5DetConfig config = new Yolov5DetConfig();
    config.set_model(model_path);
    Yolov5Det yolov8 = new Yolov5Det(config);
    Mat image = Cv2.ImRead(image_path);
    DetResult result = yolov8.predict(image);
    Mat result_im = Visualize.draw_det_result(result, image);
    Cv2.ImShow("Result", result_im);
    Cv2.WaitKey(0);
}

3.4 预测方法调用

定义好上述方法后,便可以直接在主函数中调用该方法,只需要在主函数中增加以下代码即可:

yolov5_det("yolov5s.xml", "test_image.png", "AUTO");
yolov5_det_with_process("yolov5s.xml", "test_image.png", "AUTO");
yolov5_det_using_extensions("yolov5s.xml", "test_image.png", "AUTO");

如果开发者自己没有进行模型下载与转换,又同时想快速体验该项目,我此处提供了在线的转换后的模型以及带预测图片,开发者可以直接在主函数中增加以下代码,便可以直接自动下载模型以及推理数据,并调用推理方法,实现程序直接运行。

static void Main(string[] args)
{
    string model_path = "";
    string image_path = "";
    string device = "AUTO";
    if (args.Length == 0)
    {
        if (!Directory.Exists("./model"))
        {
            Directory.CreateDirectory("./model");
        }
        if (!File.Exists("./model/yolov5s.bin") && !File.Exists("./model/yolov5s.bin"))
        {
            if (!File.Exists("./model/yolov5s.tar"))
            {
                _ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Model/yolov5s.tar",
                    "./model/yolov5s.tar").Result;
            }
            Download.unzip("./model/yolov585s.tar", "./model/");
        }

        if (!File.Exists("./model/test_image.jpg"))
        {
            _ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Image/test_det_02.jpg",
                "./model/test_image.jpg").Result;
        }
        model_path = "./model/yolov5s.xml";
        image_path = "./model/test_image.jpg";
    }
    else if (args.Length >= 2)
    {
        model_path = args[0];
        image_path = args[1];
        device = args[2];
    }
    else
    {
        Console.WriteLine("Please enter the correct command parameters, for example:");
        Console.WriteLine("> 1. dotnet run");
        Console.WriteLine("> 2. dotnet run <model path> <image path> <device name>");
    }
    // -------- Get OpenVINO runtime version --------

    OpenVinoSharp.Version version = Ov.get_openvino_version();

    Slog.INFO("---- OpenVINO INFO----");
    Slog.INFO("Description : " + version.description);
    Slog.INFO("Build number: " + version.buildNumber);

    Slog.INFO("Predict model files: " + model_path);
    Slog.INFO("Predict image  files: " + image_path);
    Slog.INFO("Inference device: " + device);
    Slog.INFO("Start yolov8 model inference.");

    yolov5_det(model_path, image_path, device);
    //yolov5_det_with_process(model_path, image_path, device);
    //yolov5_det_using_extensions(model_path, image_path, device);
}

为了减少文章篇幅,所以此处只提供了有差异的代码,如果想获取完整代码,请访问GitHub代码仓库,获取项目源码,链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/tree/master/model_samples/yolov5/yolov5_det_opencvsharp

4. Yolov5 DET 项目配置(Emgu.CV 版)

同样地,为了满足Emgu.CV开发者的需求,此处同样地提供了Emgu.CV版本的Yolov5的模型部署代码以及使用流程,此处为了简化文章内容,对于和上文重复的步骤不在进行展开讲述。

4.1 添加项目依赖

首先是安装OpenVINO™ C# API项目依赖,在命令行中输入以下指令即可:

dotnet add package OpenVINO.CSharp.API
dotnet add package OpenVINO.runtime.macos-arm64
dotnet add package OpenVINO.CSharp.API.Extensions
dotnet add package OpenVINO.CSharp.API.Extensions.EmguCV

接下来安装使用到的图像处理库 Emgu.CV,在命令行中输入以下指令即可:

dotnet add package Emgu.CV
dotnet add package Emgu.CV.runtime.mini.macos

关于在MacOS上搭建 OpenCvSharp 开发环境请参考以下文章: 【OpenCV】在MacOS上使用Emgu.CV

添加完成项目依赖后,项目的配置文件如下所示:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <RootNamespace>yolov5_det</RootNamespace>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Emgu.CV" Version="4.8.1.5350" />
    <PackageReference Include="Emgu.CV.runtime.mini.macos" Version="4.8.1.5350" />
    <PackageReference Include="OpenVINO.CSharp.API" Version="2023.2.0.4" />
    <PackageReference Include="OpenVINO.CSharp.API.Extensions" Version="1.0.1" />
    <PackageReference Include="OpenVINO.CSharp.API.Extensions.EmguCV" Version="1.0.4.1" />
    <PackageReference Include="OpenVINO.runtime.macos-arm64" Version="2023.3.0.1" />
  </ItemGroup>

</Project>

4.2 定义预测方法

模型部署流程与上一节中使用OpenCvSharp的基本一致,主要是替换了图像处理的工具,同时提供了如上一节中所展示的三种部署方式。此处为了减少文章篇幅,此处不在展示详细的部署代码,如果想获取相关代码,请访问项目GitHub,下载所有的测试代码,项目链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/tree/master/model_samples/yolov5/yolov5_det_emgucv

5. 项目运行与演示

5.1 项目编译

接下来输入项目编译指令进行项目编译,输入以下指令即可:

dotnet build

程序编译后输出为:

### 5.2 项目文件运行

接下来运行编译后的程序文件,在CMD中输入以下指令,运行编译后的项目文件:

dotnet run --no-build

运行后项目输出为:

6. 总结

在该项目中,我们结合之前开发的 OpenVINO C# API 项目部署YOLOv5模型,成功实现了对象目标检测,并且根据不同开发者的使用习惯,同时提供了OpenCvSharp以及Emgu.CV两种版本,供各位开发者使用。最后如果各位开发者在使用中有任何问题,欢迎大家与我联系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1438010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

单片机学习笔记---串口通信(1)

目录 通信的基本概念 通信的方式 1.按照数据传送的方式&#xff0c;可分为串行通信和并行通信。 1.1串行通信 1.2并行通信 2.按照通信的数据同步方式&#xff0c;又可以分为异步通信和同步通信。 2.1 异步通信 2.2同步通信 3.按照数据的传输方向&#xff0c;又可以分为…

【JAVA WEB】Web标签

目录 注释标签 标题标签 h1-h6 段落标签 换行标签 格式化标签 加粗&#xff1a;strong 标签和 b 标签 倾斜&#xff1a;em 标签和 i 标签 删除线&#xff1a; del 标签 和 s 标签 下划线&#xff1a;ins 标签 和 u 标签 图片标签&#xff1a;img 单标签 src属性&#…

零基础学Python之网络编程

1.什么是socket 官方定义&#xff1a; 套接字&#xff08;socket&#xff09;是一个抽象层&#xff0c;应用程序可以通过它发送或接收数据&#xff0c;可对其进行像对文件一样的打开、读写和关闭等操作。套接字允许应用程序将I/O插入到网络中&#xff0c;并与网络中的其他应用…

外汇天眼:台中女老板扮演诈团「假币商」,诓134人投资吸金1.8亿

自从比特币问世以来&#xff0c;加密货币为金融领域带来极大的转变&#xff0c;而且随着区块链与各种技术发展&#xff0c;其影响力逐渐扩大&#xff0c;受到愈来愈多投资人重视&#xff0c;相关的金融商品与合约也愈来愈多元&#xff0c;更带起一波投资热潮。 然而&#xff0…

【开源】SpringBoot框架开发超市账单管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统设计3.1 总体设计3.2 前端设计3.3 后端设计在这里插入图片描述 四、系统展示五、核心代码5.1 查询供应商5.2 查询商品5.3 新增超市账单5.4 编辑超市账单5.5 查询超市账单 六、免责说明 一、摘要 1.1 项目介绍 基于…

thinkadmin的form.html表单例子

<style>textarea {width: 100%;height: 200px;padding: 10px;border: 1px solid #ccc

基于 GPU 渲染的高性能空间包围计算

空间包围检测在计算机图形学、虚拟仿真、工业生产等有着广泛的应用。 现代煤矿开采过程中&#xff0c;安全一直是最大的挑战之一。地质空间中存在诸多如瓦斯积聚、地质构造异常、水文条件不利等隐蔽致灾因素&#xff0c;一旦被触发&#xff0c;可能引发灾难性的后果。因此在安…

LeetCode 200:岛屿数量(图的简化版之网格结构上的BFS、DFS)

图的BFS和DFS 首先让我们回顾一下图的BFS和DFS遍历。可以看到这种BFS和DFS板子适用于图形状&#xff0c;或者说结构已经确定&#xff0c;即我们遍历的时候只需要从根节点从上往下遍历即可&#xff0c;不用考虑这个节点有几个叶子节点&#xff0c;是否会遍历到空节点等边界情况…

如果品牌刚刚开始,切入私域社群团购,快团团是最好的选择

如果品牌刚刚开始&#xff0c;切入私域社群团购&#xff0c;快团团是最好的选择&#xff0c;借力新渠道社群团购&#xff0c;快团团&#xff0c;成就你的新品牌&#xff0c; 社群团购平台本身就有大量的信任你平台的流量&#xff0c;这个流量基数是巨大的。 你要知道的是&…

【DDD】学习笔记-服务行为模型

如果将服务视为一种行为&#xff0c;就必然需要考虑客户端与服务之间的协作。服务行为的调用者可以认为是服务消费者&#xff08;Service Consumer&#xff09;&#xff0c;提供服务行为的对象则是服务提供者&#xff08;Service Provider&#xff09;。为了服务消费者能够发现…

C++ STL: vector使用及源码剖析

vector使用 vector定义 语句 作用 vector<int> a(n); 指定容器大小为n vector<int> a(n, x); 指定容器大小为n&#xff0c;并初始化所有元素为x vector<vector<int>> a(m, vector<int>(n)); m行n列的二维数组&#xff0c;可以直接…

游戏开发-会飞的小鸟(已完结,附源码)

游戏开发-会飞的小鸟&#xff08;已完结&#xff0c;附源码&#xff09; 你将学到的课程链接详细介绍 你将学到的 掌握Java编程的基本技能开发出自己的“会飞的小鸟”游戏对面向对象编程有深刻的理解学会运用常见算法和数据结构解决问题能够独立调试和优化自己的代码 课程链接…

(2)(2.14) SPL Satellite Telemetry

文章目录 前言 1 本地 Wi-Fi&#xff08;费用&#xff1a;30 美元以上&#xff0c;范围&#xff1a;室内&#xff09; 2 蜂窝电话&#xff08;费用&#xff1a;100 美元以上&#xff0c;范围&#xff1a;蜂窝电话覆盖区域&#xff09; 3 手机卫星&#xff08;费用&#xff…

Android.mk 语法详解

一.Android.mk简介 Android.mk 是Android 提供的一种makefile 文件,注意用来编译生成&#xff08;exe&#xff0c;so&#xff0c;a&#xff0c;jar&#xff0c;apk&#xff09;等文件。 二.Android.mk编写 分析一个最简单的Android.mk LOCAL_PATH : $(call my-dir) //定义了…

[Python] opencv - 什么是直方图?如何绘制图像的直方图?如何对直方图进行均匀化处理?

什么是直方图&#xff1f; 直方图是一种统计图&#xff0c;用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分&#xff0c;然后计算在每个区间或组内的数据频数或频率&#xff08;即数据出现的次数或占比&#xff09;&#xff0c;然后用矩形或者柱形图的形式将这…

『运维备忘录』之 TAR 命令详解

运维人员不仅要熟悉操作系统、服务器、网络等只是&#xff0c;甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作&#xff0c;持续给大家更新运维工作所需要接触到的知识点&#xff0c;希望大…

绕过安全狗

本节我们想要绕过的安全狗版本为v4.023957 &#xff0c;它是网站安全狗的Apache版。 首先搭建环境。渗透环境选用DVWA漏洞集成环境&#xff0c;下载地址 为http://www.dvwa.co.uk/ 。DVWA是一款集成的渗透测试演练环境&#xff0c;当刚刚入门 并且找不到合适的靶机时&#xff…

c++ 类,第一篇章,初始化列表 (详细)

快过年啦&#xff01;雀儿在这里提前祝大家新年快乐&#xff01; 初始化&#xff0c;就是在一个变量在创建的时候被赋值&#xff0c;一共有四种可能 //X是类名&#xff0c;a是对象名&#xff0c;v是初始值 X a{v}; X a1{v}; X a2v; X a3(v);一共四种写法&#xff0c;如上。 第…

正点原子--STM32基本定时器学习笔记(1)

目录 1. 定时器概述 1.1 软件定时原理 1.2 定时器定时原理 1.3 定时器分类 1.4 定时器特性表 1.5 基本、通用、高级定时器的功能整体区别 2. 基本定时器简介 3. 基本定时器框图 时钟树分析 这部分是笔者对基本定时器的理论知识进行学习与总结&#xff01;主要记录学习…