基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---DCNv4结合SPPF ,助力自动驾驶(一)

news2024/9/21 11:07:15

💡💡💡本文主要内容:详细介绍了暗光低光数据集检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。

💡💡💡加入 DCNv4结合SPPF mAP@0.5由原始的0.682提升至0.694

 1.暗光低光数据集ExDark介绍

       低光数据集使用ExDark,该数据集是一个专门在低光照环境下拍摄出针对低光目标检测的数据集,包括从极低光环境到暮光环境等10种不同光照条件下的图片,包含图片训练集5891张,测试集1472张,12个类别。

1.Bicycle 2.Boat 3.Bottle 4.Bus 5.Car 6.Cat 7.Chair 8.Cup 9.Dog 10.Motorbike 11.People 12.Table

 

细节图:

 

2.基于YOLOv8的暗光低光检测

2.1 修改ExDark_yolo.yaml

path: ./data/ExDark_yolo/  # dataset root dir
train: images/train  # train images (relative to 'path') 1411 images
val: images/val  # val images (relative to 'path') 458 images
#test: images/test  # test images (optional) 937 images


names:
  0: Bicycle
  1: Boat
  2: Bottle
  3: Bus
  4: Car
  5: Cat
  6: Chair
  7: Cup
  8: Dog
  9: Motorbike
  10: People
  11: Table

2.2 开启训练 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    model.train(data='data/ExDark_yolo/ExDark_yolo.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

3.结果可视化分析 

YOLOv8 summary: 225 layers, 3012500 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 24/24 [00:25<00:00,  1.05s/it]
                   all        737       2404      0.743      0.609      0.682      0.427
               Bicycle        737        129      0.769      0.697      0.764      0.498
                  Boat        737        143       0.69       0.56      0.649      0.349
                Bottle        737        174      0.761      0.587      0.652      0.383
                   Bus        737         62      0.854      0.742      0.808       0.64
                   Car        737        311      0.789      0.672      0.761        0.5
                   Cat        737         95      0.783      0.568      0.661      0.406
                 Chair        737        232      0.725      0.513      0.609      0.363
                   Cup        737        181      0.725       0.53      0.609      0.375
                   Dog        737         94      0.634      0.617      0.628      0.421
             Motorbike        737         91      0.766      0.692       0.78      0.491
                People        737        744      0.789      0.603      0.711      0.398
                 Table        737        148      0.637       0.52      0.553      0.296

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 

PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。 

R_curve.png :召回率与置信度之间关系

results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 预测结果:

4.如何优化模型 

4.1 DCNv4结合SPPF

YOLOv8全网首发:新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF-CSDN博客

论文: https://arxiv.org/pdf/2401.06197.pdf

摘要:我们介绍了可变形卷积v4 (DCNv4),这是一种高效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键增强解决了其前身DCNv3的局限性:去除空间聚合中的softmax归一化,增强空间聚合的动态性和表现力;优化内存访问以最小化冗余操作以提高速度。与DCNv3相比,这些改进显著加快了收敛速度,并大幅提高了处理速度,其中DCNv4的转发速度是DCNv3的三倍以上。DCNv4在各种任务中表现出卓越的性能,包括图像分类、实例和语义分割,尤其是图像生成。当在潜在扩散模型中与U-Net等生成模型集成时,DCNv4的性能优于其基线,强调了其增强生成模型的可能性。在实际应用中,将InternImage模型中的DCNv3替换为DCNv4来创建FlashInternImage,无需进一步修改即可使速度提高80%,并进一步提高性能。DCNv4在速度和效率方面的进步,以及它在不同视觉任务中的强大性能,显示了它作为未来视觉模型基础构建块的潜力。

图1所示。(a)我们以DCNv3为基准显示相对运行时间。DCNv4比DCNv3有明显的加速,并且超过了其他常见的视觉算子。(b)在相同的网络架构下,DCNv4收敛速度快于其他视觉算子,而DCNv3在初始训练阶段落后于视觉算子。

4.2 对应yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, DCNv4_SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 实验结果分析

mAP@0.5由原始的0.682提升至0.694

YOLOv8_DCNv4_SPPF summary: 238 layers, 4867508 parameters, 0 gradients, 9.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 24/24 [00:23<00:00,  1.02it/s]
                   all        737       2404      0.786      0.587      0.694      0.436
               Bicycle        737        129      0.802      0.659      0.752      0.487
                  Boat        737        143      0.779      0.617      0.676      0.361
                Bottle        737        174      0.799      0.603       0.66      0.386
                   Bus        737         62      0.856      0.726      0.819      0.654
                   Car        737        311      0.849       0.64      0.764      0.514
                   Cat        737         95      0.757      0.589      0.696      0.436
                 Chair        737        232      0.792      0.526      0.638      0.366
                   Cup        737        181      0.776      0.499      0.625      0.391
                   Dog        737         94      0.689      0.585      0.673      0.444
             Motorbike        737         91      0.806      0.659      0.806        0.5
                People        737        744      0.828      0.549      0.689       0.39
                 Table        737        148      0.701      0.395      0.536      0.303

5.系列篇

系列篇1: DCNv4结合SPPF ,助力自动驾驶

系列篇2:自研CPMS注意力,效果优于CBAM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1437361.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

跳过mysql密码并重置密码 shell脚本

脚本 目前只是验证了5.7 版本是可以的&#xff0c;8.多的还需要验证 以下是一个简单的Shell脚本&#xff0c;用于跳过MySQL密码设置并重置密码&#xff1a; #!/bin/bash yum install psmisc -y# 停止MySQL服务 sudo service mysqld stop# 跳过密码验证 sudo mysqld --skip-g…

品牌如何营造生活感氛围?媒介盒子分享

「生活感」简而言之是指人们对生活的感受和意义&#xff0c;它往往没有充斥在各种重要的场合和事件中&#xff0c;而是更隐藏在细碎平凡的生活场景中。在营销越来越同质化的当下&#xff0c;品牌应该如何打破常规模式&#xff0c;洞察消费情绪&#xff0c;找到更能打动消费者心…

4.JS变量(变量本质,声明,更新,交换,命名规则,let和var的区别,数组简单使用)

什么是变量&#xff1f; 这里就写个人理解把&#xff0c;不仅仅是针对于js&#xff0c;在编程语言中&#xff0c;要想要计算机执行并且理解人类的意图&#xff0c;那么首先计算机要存储人类输入的数据&#xff0c;这个时候变量的作用就来了&#xff0c;变量的意义在于人类告诉…

敏捷开发中的用户故事

用户故事 drawio是一款强大的图表绘制软件&#xff0c;支持在线云端版本以及windows, macOS, linux安装版。 如果想在线直接使用&#xff0c;则直接输入网址drawon.cn或者使用drawon(桌案), drawon.cn内部完整的集成了drawio的所有功能&#xff0c;并实现了云端存储&#xff0c…

LLM是一个向量程序库,提示是查询语言

2013 年&#xff0c;Mikolov 等人在 Google。 注意到一些值得注意的事情。 他们正在构建一个模型&#xff0c;将单词嵌入到向量空间中——这个问题从 20 世纪 80 年代开始就已经有很长的学术历史了。 他们的模型使用了一个优化目标&#xff0c;旨在将单词之间的相关关系转化为…

【刷题日记】最长定差子序列

给你一个整数数组 arr 和一个整数 difference&#xff0c;请你找出并返回 arr 中最长等差子序列的长度&#xff0c;该子序列中相邻元素之间的差等于 difference 。 子序列 是指在不改变其余元素顺序的情况下&#xff0c;通过删除一些元素或不删除任何元素而从 arr 派生出来的序…

HDL Designer 2021.1 如何将默认编辑器修改为VsCode

第1步 安装Vscode 第2步 添加Vscode至HDL Designer 第3步 更改HDL Designer编译器 第4步 修改结束&#xff0c;在HDL Designer中双击block可使用Vscode编辑verilog

SpringBoot+Druid并开启监控页面

介绍 Druid 是一个开源的数据库连接池项目&#xff0c;由阿里巴巴集团开发并贡献给开源社区。它在Java领域中以其高性能、强大功能和易用性著称&#xff0c;是Java应用中广泛使用的数据库连接池组件之一。 Druid 的主要特点包括&#xff1a;   高性能与低延迟&#xff1a; Dr…

2月6日作业

1.现有无序序列数组为23,24,12,5,33,5347&#xff0c;请使用以下排序实现编程 函数1:请使用冒泡排序实现升序排序 函数2:请使用简单选择排序实现升序排序 函数3:请使用快速排序实现升序排序 函数4:请使用插入排序实现升序排序 #include<stdio.h> #include<string.h&…

我的QQ编程学习群

欢迎大家加入我的QQ编程学习群。 群号:950365002 群里面有许多的大学生大佬&#xff0c;有编程上的疑惑可以随时问&#xff0c;也可以聊一些休闲的东西。 热烈欢迎大家加入&#xff01;&#xff01; 上限:150人。

C++核心deque容器,stack容器,queue容器,list容器,set容器,pair ,map容器

3.deque容器 1.deque容器的基本概念 Vector容器是单向开口的连续内存空间&#xff0c;deque则是一种双向开口的连续线性空间。所谓的双向开口&#xff0c;意思是可以在头尾两端插入元素&#xff0c;但是在其头部操作效率奇差&#xff0c;无法被接受。 deque容器和vector容器最…

【C++第二阶段】空指针访问成员函数常成员函数常成员属性

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 空指针访问成员函数常成员函数&常成员属性 空指针访问成员函数 类对象类型的空指针可以访问成员函数&#xff0c;但是不能够访问带有成员属性的成员函数。…

Java基于微信小程序的医院核酸检测服务系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

arduino D1 中esp8266 没有ide的库

http://arduino.esp8266.com/stable/package_esp8266com_index.json https://arduino.esp8266.com/stable/package_esp8266com_index.json 这个是官网的包地址 拿到后复制到arduino ide中 然后在开发板管理器&#xff0c;搜索esp&#xff0c;搜出来后安装 去开发板选择 然后测…

俩种方法解决 VScode中 NPM 脚本消失,NPM 脚本未显示在资源管理器侧栏中

npm脚本是npm包管理器的一个功能&#xff0c;允许开发者在package.json文件中定义一系列命令脚本&#xff0c;用于执行各种开发任务。 今天打开准备运行的时候发现找不到NPM脚本了&#xff0c;左侧的一栏完全没有显示&#xff0c;在网上查阅了很多资料后总结出俩个方法可以用来…

前端基础复习(后端人员看前端知识)

企业级前端项目开发中&#xff0c;需要将前端开发所需要的工具、技术、流程、经验进行规范化和标准化&#xff0c;而不是零散的html、js、css文件堆叠在一起。 首先我们需配置前端的开发基础环境NodeJS&#xff0c;相当于后端人员java开发的JDK。然后搭建前端工程脚手架Vue-cl…

vue electron应用调exe程序

描述 用Python写了一个本地服务编译成exe程序&#xff0c;在electron程序启动后&#xff0c;自动执行exe程序 实现 1. 使用node的child_process模块可以执行windows执行&#xff0c;通过指令调exe程序 // electron/index.js var cp require("child_process"); /…

企业邮箱是什么?企业邮箱百科

本文将为大家讲解&#xff1a;1、企业邮箱的定义&#xff1b;2、企业邮箱的主要功能特点&#xff1b;3、企业邮箱如何选择和部署&#xff1b;4、企业邮箱的运营与维护&#xff1b;5、企业邮箱在实际工作中的应用与挑战&#xff1b;6、2024年最新五大企业邮箱盘点   下面提到的…

U盘显示空间小于实际U盘空间的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

IP地址如何保护网络安全

面对网络攻击时&#xff0c;仅依靠常态化的网络安全防御系统已捉襟见肘&#xff0c;如联合使用IP地址数据可以形成多元化的安全解决方案&#xff0c;全面监控网络活动&#xff0c;发现潜在威胁&#xff0c;制定有针对性的应对措施。 网络攻击追踪 当网站或应用遭受DDoS等网络攻…